702 research outputs found
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Fibulin-2 Is a Driver of Malignant Progression in Lung Adenocarcinoma
The extracellular matrix of epithelial tumors undergoes structural remodeling during periods of
uncontrolled growth, creating regional heterogeneity and torsional stress. How matrix integrity is
maintained in the face of dynamic biophysical forces is largely undefined. Here we investigated the
role of fibulin-2, a matrix glycoprotein that functions biomechanically as an inter-molecular clasp and
thereby facilitates supra-molecular assembly. Fibulin-2 was abundant in the extracellular matrix of
human lung adenocarcinomas and was highly expressed in tumor cell lines derived from mice that
develop metastatic lung adenocarcinoma from co-expression of mutant K-ras and p53. Loss-offunction
experiments in tumor cells revealed that fibulin-2 was required for tumor cells to grow and
metastasize in syngeneic mice, a surprising finding given that other intra-tumoral cell types are known
to secrete fibulin-2. However, tumor cells grew and metastasized equally well in Fbln2-null and -wildtype
littermates, implying that malignant progression was dependent specifically upon tumor cellderived
fibulin-2, which could not be offset by other cellular sources of fibulin-2. Fibulin-2 deficiency
impaired the ability of tumor cells to migrate and invade in Boyden chambers, to create a stiff
extracellular matrix in mice, to cross-link secreted collagen, and to adhere to collagen. We conclude
that fibulin-2 is a driver of malignant progression in lung adenocarcinoma and plays an unexpected
role in collagen cross-linking and tumor cell adherence to collagen
Azimuthal anisotropy and correlations in the hard scattering regime at RHIC
Azimuthal anisotropy (v(2)) and two-particle angular correlations of high p(T) charged hadrons have been measured in Au+Au collisions at roots(NN) = 130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high p(T) partons. The monotonic rise of v(2)(p(T)) for p(T) 3 GeV/c, a saturation of v(2) is observed which persists up to p(T) = 6 GeV/c
Description of Hymenolepis microstoma (Nottingham strain): a classical tapeworm model for research in the genomic era
<p>Abstract</p> <p>Background</p> <p><it>Hymenolepis microstoma </it>(Dujardin, 1845) Blanchard, 1891, the mouse bile duct tapeworm, is a rodent/beetle-hosted laboratory model that has been used in research and teaching since its domestication in the 1950s. Recent characterization of its genome has prompted us to describe the specific strain that underpins these data, anchoring its identity and bringing the 150+ year-old original description up-to-date.</p> <p>Results</p> <p>Morphometric and ultrastructural analyses were carried out on laboratory-reared specimens of the 'Nottingham' strain of <it>Hymenolepis microstoma </it>used for genome characterization. A contemporary description of the species is provided including detailed illustration of adult anatomy and elucidation of its taxonomy and the history of the specific laboratory isolate.</p> <p>Conclusions</p> <p>Our work acts to anchor the specific strain from which the <it>H. microstoma </it>genome has been characterized and provides an anatomical reference for researchers needing to employ a model tapeworm system that enables easy access to all stages of the life cycle. We review its classification, life history and development, and briefly discuss the genome and other model systems being employed at the beginning of a genomic era in cestodology.</p
The interpretations and uses of fitness landscapes in the social sciences
__Abstract__
This working paper precedes our full article entitled “The evolution of Wright’s (1932) adaptive field to contemporary interpretations and uses of fitness landscapes in the social sciences” as published in the journal Biology & Philosophy (http://link.springer.com/article/10.1007/s10539-014-9450-2). The working paper features an extended literature overview of the ways in which fitness landscapes have been interpreted and used in the social sciences, for which there was not enough space in the full article. The article features an in-depth philosophical discussion about the added value of the various ways in which fitness landscapes are used in the social sciences. This discussion is absent in the current working paper. Th
Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter
VertaisarvioitupeerReviewe
Visual Analytics for Epidemiologists: Understanding the Interactions Between Age, Time, and Disease with Multi-Panel Graphs
Visual analytics, a technique aiding data analysis and decision making, is a novel tool that allows for a better understanding of the context of complex systems. Public health professionals can greatly benefit from this technique since context is integral in disease monitoring and biosurveillance. We propose a graphical tool that can reveal the distribution of an outcome by time and age simultaneously.We introduce and demonstrate multi-panel (MP) graphs applied in four different settings: U.S. national influenza-associated and salmonellosis-associated hospitalizations among the older adult population (≥65 years old), 1991-2004; confirmed salmonellosis cases reported to the Massachusetts Department of Public Health for the general population, 2004-2005; and asthma-associated hospital visits for children aged 0-18 at Milwaukee Children's Hospital of Wisconsin, 1997-2006. We illustrate trends and anomalies that otherwise would be obscured by traditional visualization techniques such as case pyramids and time-series plots.MP graphs can weave together two vital dynamics--temporality and demographics--that play important roles in the distribution and spread of diseases, making these graphs a powerful tool for public health and disease biosurveillance efforts
Tonotopically Arranged Traveling Waves in the Miniature Hearing Organ of Bushcrickets
Place based frequency discrimination (tonotopy) is a fundamental property of the coiled mammalian cochlea. Sound vibrations mechanically conducted to the hearing organ manifest themselves into slow moving waves that travel along the length of the organ, also referred to as traveling waves. These traveling waves form the basis of the tonotopic frequency representation in the inner ear of mammals. However, so far, due to the secure housing of the inner ear, these waves only could be measured partially over small accessible regions of the inner ear in a living animal. Here, we demonstrate the existence of tonotopically ordered traveling waves covering most of the length of a miniature hearing organ in the leg of bushcrickets in vivo using laser Doppler vibrometery. The organ is only 1 mm long and its geometry allowed us to investigate almost the entire length with a wide range of stimuli (6 to 60 kHz). The tonotopic location of the traveling wave peak was exponentially related to stimulus frequency. The traveling wave propagated along the hearing organ from the distal (high frequency) to the proximal (low frequency) part of the leg, which is opposite to the propagation direction of incoming sound waves. In addition, we observed a non-linear compression of the velocity response to varying sound pressure levels. The waves are based on the delicate micromechanics of cellular structures different to those of mammals. Hence place based frequency discrimination by traveling waves is a physical phenomenon that presumably evolved in mammals and bushcrickets independently
Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress
BACKGROUND: In our previous studies, we found that the sites in prokaryotic genomes which are most susceptible to duplex destabilization under the negative superhelical stresses that occur in vivo are statistically highly significantly associated with intergenic regions that are known or inferred to contain promoters. In this report we investigate how this structural property, either alone or together with other structural and sequence attributes, may be used to search prokaryotic genomes for promoters. RESULTS: We show that the propensity for stress-induced DNA duplex destabilization (SIDD) is closely associated with specific promoter regions. The extent of destabilization in promoter-containing regions is found to be bimodally distributed. When compared with DNA curvature, deformability, thermostability or sequence motif scores within the -10 region, SIDD is found to be the most informative DNA property regarding promoter locations in the E. coli K12 genome. SIDD properties alone perform better at detecting promoter regions than other programs trained on this genome. Because this approach has a very low false positive rate, it can be used to predict with high confidence the subset of promoters that are strongly destabilized. When SIDD properties are combined with -10 motif scores in a linear classification function, they predict promoter regions with better than 80% accuracy. When these methods were tested with promoter and non-promoter sequences from Bacillus subtilis, they achieved similar or higher accuracies. We also present a strictly SIDD-based predictor for annotating promoter sequences in complete microbial genomes. CONCLUSION: In this report we show that the propensity to undergo stress-induced duplex destabilization (SIDD) is a distinctive structural attribute of many prokaryotic promoter sequences. We have developed methods to identify promoter sequences in prokaryotic genomes that use SIDD either as a sole predictor or in combination with other DNA structural and sequence properties. Although these methods cannot predict all the promoter-containing regions in a genome, they do find large sets of potential regions that have high probabilities of being true positives. This approach could be especially valuable for annotating those genomes about which there is limited experimental data
In vivo tissue uptake of intravenously injected water soluble all-trans β-carotene used as a food colorant
Water soluble β-carotene (WS-BC) is a carotenoid form that has been developed as a food colorant. WS-BC is known to contain 10% of all-trans β-carotene (AT-BC). The aim of the present study was to investigate in vivo tissue uptake of AT-BC after the administration of WS-BC into rats. Seven-week-old male rats were administered 20 mg of WS-BC dissolved in saline by intravenous injection into the tail vein. At 0, 6, 24, 72, 120 and 168 hours (n = 7/time), blood was drawn and liver, lungs, adrenal glands, kidneys and testes were dissected. The levels of AT-BC in the plasma and dissected tissues were quantified with HPLC. After intravenous administration, AT-BC level in plasma first increased up to 6 h and returned to normal at 72 h. In the testes, the AT-BC level first increased up to 24 h and then did not decrease but was retained up to 168 h. In the other tissues, the level first increased up to 6 h and then decreased from 6 to 120 or 168 h but did not return to normal. The accumulation of WS-BC in testes but not in the other 5 tissues examined may suggest that AT-BC was excreted or metabolized in these tissues but not in testes. Although WS-BC is commonly used as a food colorant, its effects on body tissues are still not clarified. Results of the present study suggest that further investigations are required to elucidate effects of WS-BC on various body tissues
- …
