1,783 research outputs found
Albumin concentrations are primarily determined by the body cell mass and the systemic inflammatory response in cancer patients with weight loss
The association between hypoalbuminemia and poor prognosis in patients with cancer is well recognized. However, the factors that contribute to the fall in albumin concentrations are not well understood. In the present study, we examined the relationship between circulating albumin concentrations, weight loss, the body cell mass (measured using total body potassium), and the presence of an inflammatory response (measured using C- reactive protein) in male patients (n=40) with advanced lung or gastrointestinal cancer. Albumin concentrations were significantly correlated with the percent ideal body weight (r=0.390, p lt 0.05), extent of reported weight loss (r=-0.492, p lt 0.01), percent predicted total body potassium (adjusted for age, height, and weight, r=0.686, p lt 0.001), and logo C-reactive protein concentrations (r=-0.545, p lt 0.001). On multiple regression analysis, the percent predicted total body potassium and log(10) C-reactive protein concentrations accounted for 63% of the variation in albumin concentrations (r(2) = 0.626, p lt 0.001). The interrelationship between albumin, body cell mass, and the inflammatory response is consistent with the concept that the presence of an ongoing inflammatory response contributes to the progressive loss of these vital protein components of the body and the subsequent death of patients with advanced cancer
Topological Schr\"odinger cats: Non-local quantum superpositions of topological defects
Topological defects (such as monopoles, vortex lines, or domain walls) mark
locations where disparate choices of a broken symmetry vacuum elsewhere in the
system lead to irreconcilable differences. They are energetically costly (the
energy density in their core reaches that of the prior symmetric vacuum) but
topologically stable (the whole manifold would have to be rearranged to get rid
of the defect). We show how, in a paradigmatic model of a quantum phase
transition, a topological defect can be put in a non-local superposition, so
that - in a region large compared to the size of its core - the order parameter
of the system is "undecided" by being in a quantum superposition of conflicting
choices of the broken symmetry. We demonstrate how to exhibit such a
"Schr\"odinger kink" by devising a version of a double-slit experiment suitable
for topological defects. Coherence detectable in such experiments will be
suppressed as a consequence of interaction with the environment. We analyze
environment-induced decoherence and discuss its role in symmetry breaking.Comment: 7 pages, 4 figure
Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator
The reliable detection of single quantum particles has revolutionized the
field of quantum optics and quantum information processing. For several years,
researchers have aspired to extend such detection possibilities to larger scale
strongly correlated quantum systems, in order to record in-situ images of a
quantum fluid in which each underlying quantum particle is detected. Here we
report on fluorescence imaging of strongly interacting bosonic Mott insulators
in an optical lattice with single-atom and single-site resolution. From our
images, we fully reconstruct the atom distribution on the lattice and identify
individual excitations with high fidelity. A comparison of the radial density
and variance distributions with theory provides a precise in-situ temperature
and entropy measurement from single images. We observe Mott-insulating plateaus
with near zero entropy and clearly resolve the high entropy rings separating
them although their width is of the order of only a single lattice site.
Furthermore, we show how a Mott insulator melts for increasing temperatures due
to a proliferation of local defects. Our experiments open a new avenue for the
manipulation and analysis of strongly interacting quantum gases on a lattice,
as well as for quantum information processing with ultracold atoms. Using the
high spatial resolution, it is now possible to directly address individual
lattice sites. One could, e.g., introduce local perturbations or access regions
of high entropy, a crucial requirement for the implementation of novel cooling
schemes for atoms on a lattice
Single-atom imaging of fermions in a quantum-gas microscope
Single-atom-resolved detection in optical lattices using quantum-gas
microscopes has enabled a new generation of experiments in the field of quantum
simulation. Fluorescence imaging of individual atoms has so far been achieved
for bosonic species with optical molasses cooling, whereas detection of
fermionic alkaline atoms in optical lattices by this method has proven more
challenging. Here we demonstrate single-site- and single-atom-resolved
fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas
microscope setup using electromagnetically-induced-transparency cooling. We
detected on average 1000 fluorescence photons from a single atom within 1.5s,
while keeping it close to the vibrational ground state of the optical lattice.
Our results will enable the study of strongly correlated fermionic quantum
systems in optical lattices with resolution at the single-atom level, and give
access to observables such as the local entropy distribution and individual
defects in fermionic Mott insulators or anti-ferromagnetically ordered phases.Comment: 7 pages, 5 figures; Nature Physics, published online 13 July 201
Interaction and filling induced quantum phases of dual Mott insulators of bosons and fermions
Many-body effects are at the very heart of diverse phenomena found in
condensed-matter physics. One striking example is the Mott insulator phase
where conductivity is suppressed as a result of a strong repulsive interaction.
Advances in cold atom physics have led to the realization of the Mott
insulating phases of atoms in an optical lattice, mimicking the corresponding
condensed matter systems. Here, we explore an exotic strongly-correlated system
of Interacting Dual Mott Insulators of bosons and fermions. We reveal that an
inter-species interaction between bosons and fermions drastically modifies each
Mott insulator, causing effects that include melting, generation of composite
particles, an anti-correlated phase, and complete phase-separation. Comparisons
between the experimental results and numerical simulations indicate intrinsic
adiabatic heating and cooling for the attractively and repulsively interacting
dual Mott Insulators, respectively
Environmental Costs of Government-Sponsored Agrarian Settlements in Brazilian Amazonia
Brazil has presided over the most comprehensive agrarian reform frontier colonization program on Earth, in which ~1.2 million settlers have been translocated by successive governments since the 1970's, mostly into forested hinterlands of Brazilian Amazonia. These settlements encompass 5.3% of this ~5 million km2 region, but have contributed with 13.5% of all land conversion into agropastoral land uses. The Brazilian Federal Agrarian Agency (INCRA) has repeatedly claimed that deforestation in these areas largely predates the sanctioned arrival of new settlers. Here, we quantify rates of natural vegetation conversion across 1911 agrarian settlements allocated to 568 Amazonian counties and compare fire incidence and deforestation rates before and after the official occupation of settlements by migrant farmers. The timing and spatial distribution of deforestation and fires in our analysis provides irrefutable chronological and spatially explicit evidence of agropastoral conversion both inside and immediately outside agrarian settlements over the last decade. Deforestation rates are strongly related to local human population density and road access to regional markets. Agrarian settlements consistently accelerated rates of deforestation and fires, compared to neighboring areas outside settlements, but within the same counties. Relocated smallholders allocated to forest areas undoubtedly operate as pivotal agents of deforestation, and most of the forest clearance occurs in the aftermath of government-induced migration
Genome-wide signatures of convergent evolution in echolocating mammals
Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised
Microscopic observation of magnon bound states and their dynamics
More than eighty years ago, H. Bethe pointed out the existence of bound
states of elementary spin waves in one-dimensional quantum magnets. To date,
identifying signatures of such magnon bound states has remained a subject of
intense theoretical research while their detection has proved challenging for
experiments. Ultracold atoms offer an ideal setting to reveal such bound states
by tracking the spin dynamics after a local quantum quench with single-spin and
single-site resolution. Here we report on the direct observation of two-magnon
bound states using in-situ correlation measurements in a one-dimensional
Heisenberg spin chain realized with ultracold bosonic atoms in an optical
lattice. We observe the quantum walk of free and bound magnon states through
time-resolved measurements of the two spin impurities. The increased effective
mass of the compound magnon state results in slower spin dynamics as compared
to single magnon excitations. In our measurements, we also determine the decay
time of bound magnons, which is most likely limited by scattering on thermal
fluctuations in the system. Our results open a new pathway for studying
fundamental properties of quantum magnets and, more generally, properties of
interacting impurities in quantum many-body systems.Comment: 8 pages, 7 figure
Population Genetics of Franciscana Dolphins (Pontoporia blainvillei): Introducing a New Population from the Southern Edge of Their Distribution
Due to anthropogenic factors, the franciscana dolphin, Pontoporia blainvillei, is the most threatened small cetacean on the Atlantic coast of South America. Four Franciscana Management Areas have been proposed: Espiritu Santo to Rio de Janeiro (FMA I), São Paulo to Santa Catarina (FMA II), Rio Grande do Sul to Uruguay (FMA III), and Argentina (FMA IV). Further genetic studies distinguished additional populations within these FMAs. We analyzed the population structure, phylogeography, and demographic history in the southernmost portion of the species range. From the analysis of mitochondrial DNA control region sequences, 5 novel haplotypes were found, totalizing 60 haplotypes for the entire distribution range. The haplotype network did not show an apparent phylogeographical signal for the southern FMAs. Two populations were identified: Monte Hermoso (MH) and Necochea (NC)+Claromecó (CL)+Río Negro (RN). The low levels of genetic variability, the relative constant size over time, and the low levels of gene flow may indicate that MH has been colonized by a few maternal lineages and became isolated from geographically close populations. The apparent increase in NC+CL+RN size would be consistent with the higher genetic variability found, since genetic diversity is generally higher in older and expanding populations. Additionally, RN may have experienced a recent split from CL and NC; current high levels of gene flow may be occurring between the latter ones. FMA IV would comprise four franciscana dolphin populations: Samborombón West+Samborombón South, Cabo San Antonio+Buenos Aires East, NC+CL+Buenos Aires Southwest+RN and MH. Results achieved in this study need to be taken into account in order to ensure the long-term survival of the species.Fil: Gariboldi, María Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Tunez, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Luján; ArgentinaFil: Dejean, Cristina Beatriz. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Ciencias Antropológicas. Sección Antropología Biológica; ArgentinaFil: Failla, Mauricio. Fundación Cethus; ArgentinaFil: Vitullo, Alfredo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Negri, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; ArgentinaFil: Cappozzo, Humberto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; Argentin
Improved Measurements of Partial Rate Asymmetry in B -> h h Decays
We report improved measurements of the partial rate asymmetry (Acp) in B -> h
h decays with 140fb^-1 of data collected with the Belle detector at the KEKB
e+e- collider. Here h stands for a charged or neutral pion or kaon and in total
five decay modes are included: K-+ pi+-, K0s pi-+, K-+ pi0, pi-+ pi0 and K0s
pi0. The flavor of the last decay mode is determined from the accompanying B
meson. Using a data sample 4.7 times larger than that of our previous
measurement, we find Acp(K-+ pi+-) -0.088+-0.035+-0.013, 2.4 sigma from zero.
Results for other decay modes are also presented.Comment: 9 pages, 1 figur
- …
