194 research outputs found

    Genome-wide signatures of convergent evolution in echolocating mammals

    Get PDF
    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised

    The genomic basis of adaptive evolution in threespine sticklebacks

    Get PDF
    Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine–freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine–freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.National Human Genome Research Institute (U.S.)National Human Genome Research Institute (U.S.) (NHGRI CEGS Grant P50-HG002568

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    The interpretations and uses of fitness landscapes in the social sciences

    Get PDF
    __Abstract__ This working paper precedes our full article entitled “The evolution of Wright’s (1932) adaptive field to contemporary interpretations and uses of fitness landscapes in the social sciences” as published in the journal Biology & Philosophy (http://link.springer.com/article/10.1007/s10539-014-9450-2). The working paper features an extended literature overview of the ways in which fitness landscapes have been interpreted and used in the social sciences, for which there was not enough space in the full article. The article features an in-depth philosophical discussion about the added value of the various ways in which fitness landscapes are used in the social sciences. This discussion is absent in the current working paper. Th

    Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications.

    Get PDF
    Small extracellular vesicles (sEVs) from mesenchymal stromal/stem cells (MSCs) are transiting rapidly towards clinical applications. However, discrepancies and controversies about the biology, functions, and potency of MSC-sEVs have arisen due to several factors: the diversity of MSCs and their preparation; various methods of sEV production and separation; a lack of standardized quality assurance assays; and limited reproducibility of in vitro and in vivo functional assays. To address these issues, members of four societies (SOCRATES, ISEV, ISCT and ISBT) propose specific harmonization criteria for MSC-sEVs to facilitate data sharing and comparison, which should help to advance the field towards clinical applications. Specifically, MSC-sEVs should be defined by quantifiable metrics to identify the cellular origin of the sEVs in a preparation, presence of lipid-membrane vesicles, and the degree of physical and biochemical integrity of the vesicles. For practical purposes, new MSC-sEV preparations might also be measured against a well-characterized MSC-sEV biological reference. The ultimate goal of developing these metrics is to map aspects of MSC-sEV biology and therapeutic potency onto quantifiable features of each preparation

    Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases

    Get PDF
    Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics

    Glucagon-like peptide-1 receptor agonist in myocardial infarction and atherosclerotic cardiovascular disease risk reduction: a comprehensive meta-analysis of number needed to treat, efficacy and safety

    Get PDF
    Background Glucagon like peptide-1 receptor agonist (GLP-1RA) use in individuals with high atherosclerotic cardiovascular disease (ASCVD) risk reduces major adverse cardiovascular events (MACE). However, its clinical impact,in terms of numbers needed to treat (NNT), efficacy and safety profile in reducing the risk of myocardial infarction (MI) and the individual ASCVD constituents remain unclear.Methods Electronic databases, Medline and Embase were reviewed for randomized trials from inception to 29 May 2025. Risk-reduction effect of GLP-1RA were pooled using pairwise meta-analysis with random-effects model. Theprimary outcome was MI, and secondary outcomes were the individual ASCVD constituents.Results 109,846 patients from 25 unique studies were included. Over a follow-up duration of 3.48 ± 1.51 (1.55 to 5.47) years, GLP-1RA reduced the risk of total MI (RR: 0.86, p < 0.01), with numbers needed to benefit (NNTB) of 207 toprevent one event of MI. Higher body mass index was associated with greater MI risk reduction (β: -0.09, p = 0.03) in GLP-1RA users. GLP-1RA reduced cardiovascular mortality (RR: 0.87, p < 0.01, NNTB 170), MACE (RR: 0.87, p < 0.01, NNTB67) and stroke (RR: 0.88, p < 0.01, NNTB 335) compared to placebo. GLP-1RA commonly resulted in gastrointestinal side-effects amongst other systems (RR: 1.55, p < 0.01, NNTH 9)

    Deregulation of manganese superoxide dismutase (SOD2) expression and lymph node metastasis in tongue squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymph node metastasis is a critical event in the progression of tongue squamous cell carcinoma (TSCC). The identification of biomarkers associated with the metastatic process would provide critical prognostic information to facilitate clinical decision making. Previous studies showed that deregulation of manganese superoxide dismutase (SOD2) expression is a frequent event in TSCC and may be associated with enhanced cell invasion. The purpose of this study is to further evaluate whether the expression level of SOD2 is correlated with the metastatic status in TSCC patients.</p> <p>Methods</p> <p>We first examined the SOD2 expression at mRNA level on 53 TSCC and 22 normal control samples based on pooled-analysis of existing microarray datasets. To confirm our observations, we examined the expression of SOD2 at protein level on an additional TSCC patient cohort (n = 100), as well as 31 premalignant dysplasias, 15 normal tongue mucosa, and 32 lymph node metastatic diseases by immunohistochemistry (IHC).</p> <p>Results</p> <p>The SOD2 mRNA level in primary TSCC tissue is reversely correlated with lymph node metastasis in the first TSCC patient cohort. The SOD2 protein level in primary TSCC tissue is also reversely correlated with lymph node metastasis in the second TSCC patient cohort. Deregulation of SOD2 expression is a common event in TSCC and appears to be associated with disease progression. Statistical analysis revealed that the reduced SOD2 expression in primary tumor tissue is associated with lymph node metastasis in both TSCC patient cohorts examined.</p> <p>Conclusions</p> <p>Our study suggested that the deregulation of SOD2 in TSCC has potential predictive values for lymph node metastasis, and may serve as a therapeutic target for patients at risk of metastasis.</p

    Gene Profiling of Mta1 Identifies Novel Gene Targets and Functions

    Get PDF
    BACKGROUND: Metastasis-associated protein 1 (MTA1), a master dual co-regulatory protein is found to be an integral part of NuRD (Nucleosome Remodeling and Histone Deacetylation) complex, which has indispensable transcriptional regulatory functions via histone deacetylation and chromatin remodeling. Emerging literature establishes MTA1 to be a valid DNA-damage responsive protein with a significant role in maintaining the optimum DNA-repair activity in mammalian cells exposed to genotoxic stress. This DNA-damage responsive function of MTA1 was reported to be a P53-dependent and independent function. Here, we investigate the influence of P53 on gene regulation function of Mta1 to identify novel gene targets and functions of Mta1. METHODS: Gene expression analysis was performed on five different mouse embryonic fibroblasts (MEFs) samples (i) the Mta1 wild type, (ii) Mta1 knock out (iii) Mta1 knock out in which Mta1 was reintroduced (iv) P53 knock out (v) P53 knock out in which Mta1 was over expressed using Affymetrix Mouse Exon 1.0 ST arrays. Further Hierarchical Clustering, Gene Ontology analysis with GO terms satisfying corrected p-value<0.1, and the Ingenuity Pathway Analysis were performed. Finally, RT-qPCR was carried out on selective candidate genes. SIGNIFICANCE/CONCLUSION: This study represents a complete genome wide screen for possible target genes of a coregulator, Mta1. The comparative gene profiling of Mta1 wild type, Mta1 knockout and Mta1 re-expression in the Mta1 knockout conditions define "bona fide" Mta1 target genes. Further extensive analyses of the data highlights the influence of P53 on Mta1 gene regulation. In the presence of P53 majority of the genes regulated by Mta1 are related to inflammatory and anti-microbial responses whereas in the absence of P53 the predominant target genes are involved in cancer signaling. Thus, the presented data emphasizes the known functions of Mta1 and serves as a rich resource which could help us identify novel Mta1 functions
    corecore