39 research outputs found
Genetics ignite focus on microglial inflammation in Alzheimer’s disease
In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer’s disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies. We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how these factors may interact to modulate microglial function in AD
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
Prediction of colorectal cancer diagnosis based on circulating plasma proteins
International audienceNon-invasive detection of colorectal cancer with blood-based markers is a critical clinical need. Here we describe a phased mass spectrometry-based approach for the discovery, screening, and validation of circulating protein biomarkers with diagnostic value. Initially, we profiled human primary tumor tissue epithelia and characterized about 300 secreted and cell surface candidate glycoproteins. These candidates were then screened in patient systemic circulation to identify detectable candidates in blood plasma. An 88-plex targeting method was established to systematically monitor these proteins in two large and independent cohorts of plasma samples, which generated quantitative clinical datasets at an unprecedented scale. The data were deployed to develop and evaluate a five-protein biomarker signature for colorectal cancer detection
