556 research outputs found
Role of Circulating Fibroblast Growth Factor 21 Measurement in Primary Prevention of Coronary Heart Disease Among Chinese Patients With Type 2 Diabetes Mellitus
BACKGROUND: Fibroblast growth factor 21 (FGF21) has demonstrated beneficial effects on lipid and carbohydrate metabolism. In cross-sectional studies, an association of raised circulating FGF21 levels with coronary heart disease (CHD) was found in some but not all studies. Here we investigated prospectively whether baseline serum FGF21 levels could predict incident CHD in subjects with type 2 diabetes mellitus and no known cardiovascular diseases. METHODS AND RESULTS: Baseline serum FGF21 levels were measured in 3528 Chinese subjects with type 2 diabetes mellitus recruited from the Hong Kong West Diabetes Registry. The role of baseline serum FGF21 levels in predicting incident CHD over a median follow-up of 3.8 years was analyzed using Cox regression analysis. Among 3528 recruited subjects without known cardiovascular diseases, 147 (4.2%) developed CHD over a mean follow-up of 4 years. Baseline serum log-transformed FGF21 levels were significantly higher in those who had incident CHD than those who did not (222.7 pg/mL [92.8-438.4] versus 151.1 pg/mL [75.6-274.6]; P<0.001). On multivariable Cox regression analysis, baseline serum FGF21 levels, using an optimal cutoff of 206.22 pg/mL derived from our study, independently predicted incident CHD (hazard ratio, 1.55; 95% CI, 1.10-2.19; P=0.013) and significantly improved net reclassification index and integrated discrimination improvement after adjustment for conventional cardiovascular risk factors. CONCLUSIONS: We have demonstrated, for the first time, that serum FGF21 level is an independent predictor of incident CHD and might be usefully utilized as a biomarker for identifying type 2 diabetes mellitus subjects with raised CHD risk, for primary prevention.published_or_final_versio
Plasma fibrinogen level as a predictor of incident metabolic syndrome in a community-based prospective study in Hong Kong Chinese
BACKGROUND AND AIMS: Metabolic syndrome (MS) comprises a constellation of metabolic abnormalities associated with a high risk of developing diabetes and cardiovascular diseases. Central obesity, with related insulin resistance and inflammation are considered the core of the underlying pathogenesis of MS. Fibrinogen, an acute-phase reactant in the coagulation cascade, has been shown to play pivotal role in determining the extent of local or systemic inflammation. In this study, we examined whether plasma fibrinogen was predictive of incident MS in a community-based Chinese cohort. MATERIALS AND METHODS: Subjects were recruited from the Hong Kong Cardiovascular Risk Factors Prevalence Study (CRISPS) cohort. 2780 subjects were recruited in 1995-6 with baseline assessment performed. 1416 subjects without MS at …postprin
Genetics of Apparently Sporadic Pheochromocytoma and Paraganglioma in a Chinese Population
© Georg Thieme Verlag KG Stuttgart New York.Identification of germline mutation in patients with apparently sporadic pheochromocytomas and paragangliomas is crucial. Clinical indicators, which include young age, bilateral or multifocal, extra-adrenal, malignant, or recurrent tumors, predict the likelihood of harboring germline mutation in Caucasian subjects. However, data on the prevalence of germline mutation, as well as the applicability of these clinical indicators in Chinese, are lacking. We conducted a cross-sectional study at a single endocrine tertiary referral center in Hong Kong. Subjects with pheochromocytomas and paragangliomas were evaluated for the presence of germline mutations involving 10 susceptibility genes, which included NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, TMEM 127, MAX, and FH genes. Clinical indicators were assessed for their association with the presence of germline mutations. Germline mutations, 2 being novel, were found in 24.4% of the 41 Chinese subjects recruited and 11.4% among those with apparently sporadic presentation. The increasing number of the afore-mentioned clinical indicators significantly correlated with the likelihood of harboring germline mutation in one of the 10 susceptibility genes. (r=0.757, p=0.026). The presence of 2 or more clinical indicators should prompt genetic testing for germline mutations in Chinese subjects. In conclusion, our study confirmed that a significant proportion of Chinese subjects with apparently sporadic pheochromocytoma and paraganglioma harbored germline mutations and these clinical indicators identified from Caucasians series were also applicable in Chinese subjects. This information will be of clinical relevance in the design of appropriate genetic screening strategies in Chinese populations.postprin
An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels
Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus, GCKR, significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of GCKR, rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex (P = 1.61 × 10−12; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI (P = 3.01 × 10−14; β [SE] = 0.15 [0.02]). GCKR Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate–mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.postprin
State based model of long-term potentiation and synaptic tagging and capture
Recent data indicate that plasticity protocols have not only synapse-specific but also more widespread effects. In particular, in synaptic tagging and capture (STC), tagged synapses can capture plasticity-related proteins, synthesized in response to strong stimulation of other synapses. This leads to long-lasting modification of only weakly stimulated synapses. Here we present a biophysical model of synaptic plasticity in the hippocampus that incorporates several key results from experiments on STC. The model specifies a set of physical states in which a synapse can exist, together with transition rates that are affected by high- and low-frequency stimulation protocols. In contrast to most standard plasticity models, the model exhibits both early- and late-phase LTP/D, de-potentiation, and STC. As such, it provides a useful starting point for further theoretical work on the role of STC in learning and memory
Missing Momentum Reconstruction and Spin Measurements at Hadron Colliders
We study methods for reconstructing the momenta of invisible particles in
cascade decay chains at hadron colliders. We focus on scenarios, such as SUSY
and UED, in which new physics particles are pair produced. Their subsequent
decays lead to two decay chains ending with neutral stable particles escaping
detection. Assuming that the masses of the decaying particles are already
measured, we obtain the momenta by imposing the mass-shell constraints. Using
this information, we develop techniques of determining spins of particles in
theories beyond the standard model. Unlike the methods relying on Lorentz
invariant variables, this method can be used to determine the spin of the
particle which initiates the decay chain. We present two complementary ways of
applying our method by using more inclusive variables relying on kinematic
information from one decay chain, as well as constructing correlation variables
based on the kinematics of both decay chains in the same event.Comment: Version to appear in JHE
Phenomenological Implications of Deflected Mirage Mediation: Comparison with Mirage Mediation
We compare the collider phenomenology of mirage mediation and deflected
mirage mediation, which are two recently proposed "mixed" supersymmetry
breaking scenarios motivated from string compactifications. The scenarios
differ in that deflected mirage mediation includes contributions from gauge
mediation in addition to the contributions from gravity mediation and anomaly
mediation also present in mirage mediation. The threshold effects from gauge
mediation can drastically alter the low energy spectrum from that of pure
mirage mediation models, resulting in some cases in a squeezed gaugino spectrum
and a gluino that is much lighter than other colored superpartners. We provide
several benchmark deflected mirage mediation models and construct model lines
as a function of the gauge mediation contributions, and discuss their discovery
potential at the LHC.Comment: 29 pages, 9 figure
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
Construction of large-volume tissue mimics with 3D functional vascular networks
We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture.ope
Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling
De novo mutations in CHD8 are strongly associated with autism spectrum disorder, but the basic biology of CHD8 remains poorly understood. Here we report that Chd8 knockdown during cortical development results in defective neural progenitor proliferation and differentiation that ultimately manifests in abnormal neuronal morphology and behaviors in adult mice. Transcriptome analysis revealed that while Chd8 stimulates the transcription of cell cycle genes, it also precludes the induction of neural-specific genes by regulating the expression of PRC2 complex components. Furthermore, knockdown of Chd8 disrupts the expression of key transducers of Wnt signaling, and enhancing Wnt signaling rescues the transcriptional and behavioral deficits caused by Chd8 knockdown. We propose that these roles of Chd8 and the dynamics of Chd8 expression during development help negotiate the fine balance between neural progenitor proliferation and differentiation. Together, these observations provide new insights into the neurodevelopmental role of Chd8.National Institutes of Health (U.S.) (Grant UH1-MH106018-03
- …
