1,345 research outputs found
Comparison of Stance Phase Knee Joint Angles and Moments Using Two Different Surface Marker Representations of the Proximal Shank in Walkers and Runners
Efforts to compare different surface marker configurations in 3-dimensional motion analysis are warranted as more complex and custom marker sets become more common. At the knee, different markers can been used to represent the proximal shank. Often, two anatomical markers are placed over the femoral condyles, with their midpoint defining both the distal thigh and proximal shank segment ends. However, two additional markers placed over the tibial plateaus have been used to define the proximal shank end. For this experiment, simultaneous data for both proximal shank configurations were independently collected at two separate laboratories by different investigators, with one lab capturing a walking population and the other a running population. Common discrete knee joint variables were then compared between marker sets in each population. Using the augmented marker set, peak knee flexion after weight acceptance was less (1.2-1.7°, p<0.02) and peak knee adduction was greater (0.7-1.4°, p<0.001) in both data sets. Similarly, the calculated peak knee flexion moment was less by 15-20% and internal rotation moment was greater by 11-18% (p<0.001). These results suggest that the calculation of knee joint mechanics are influenced by the proximal shank’s segment endpoint definition, independent of dynamic task, investigator, laboratory environment, and population in this study
A biomimetic vocalisation system for MiRo
There is increasing interest in the use of animal-like robots in applications such as companionship and pet therapy. However, in the majority of cases it is only the robot's physical appearance that mimics a given animal. In contrast, MiRo is the first commercial biomimetic robot to be based on a hardware and software architecture that is modelled on the biological brain. This paper describes how MiRo's vocalisation system was designed, not using pre-recorded animal sounds, but based on the implementation of a real-time parametric general-purpose mammalian vocal synthesiser tailored to the specific physical characteristics of the robot. The novel outcome has been the creation of an 'appropriate' voice for MiRo that is perfectly aligned to the physical and behavioural affordances of the robot, thereby avoiding the 'uncanny valley' effect and contributing strongly to the effectiveness of MiRo as an interactive device
Do red deer stags (Cervus elaphus) use roar fundamental frequency (F0) to assess rivals?
It is well established that in humans, male voices are disproportionately lower pitched than female voices, and recent studies suggest that this dimorphism in fundamental frequency (F0) results from both intrasexual (male competition) and intersexual (female mate choice) selection for lower pitched voices in men. However, comparative investigations indicate that sexual dimorphism in F0 is not universal in terrestrial mammals. In the highly polygynous and sexually dimorphic Scottish red deer Cervus elaphus scoticus, more successful males give sexually-selected calls (roars) with higher minimum F0s, suggesting that high, rather than low F0s advertise quality in this subspecies. While playback experiments demonstrated that oestrous females prefer higher pitched roars, the potential role of roar F0 in male competition remains untested. Here we examined the response of rutting red deer stags to playbacks of re-synthesized male roars with different median F0s. Our results show that stags’ responses (latencies and durations of attention, vocal and approach responses) were not affected by the F0 of the roar. This suggests that intrasexual selection is unlikely to strongly influence the evolution of roar F0 in Scottish red deer stags, and illustrates how the F0 of terrestrial mammal vocal sexual signals may be subject to different selection pressures across species. Further investigations on species characterized by different F0 profiles are needed to provide a comparative background for evolutionary interpretations of sex differences in mammalian vocalizations
Second chances: Investigating athletes’ experiences of talent transfer
Talent transfer initiatives seek to transfer talented, mature individuals from one sport to another. Unfortunately talent transfer initiatives seem to lack an evidence-based direction and a rigorous exploration of the mechanisms underpinning the approach. The purpose of this exploratory study was to identify the factors which successfully transferring athletes cite as facilitative of talent transfer. In contrast to the anthropometric and performance variables that underpin current talent transfer initiatives, participants identified a range of psychobehavioral and environmental factors as key to successful transfer. We argue that further research into the mechanisms of talent transfer is needed in order to provide a strong evidence base for the methodologies employed in these initiatives
Two-Loop Soft Corrections and Resummation of the Thrust Distribution in the Dijet Region
The thrust distribution in electron-positron annihilation is a classical
precision QCD observable. Using renormalization group (RG) evolution in Laplace
space, we perform the resummation of logarithmically enhanced corrections in
the dijet limit, to next-to-next-to-leading logarithmic (NNLL)
accuracy. We independently derive the two-loop soft function for the thrust
distribution and extract an analytical expression for the NNLL resummation
coefficient . To combine the resummed expressions with the fixed-order
results, we derive the -matching and -matching of the NNLL
approximation to the fixed-order NNLO distribution.Comment: 50 pages, 12 figures, 1 table. Few minor changes. Version accepted
for publication in JHE
Ordering variable for parton showers
The parton splittings in a parton shower are ordered according to an ordering
variable, for example the transverse momentum of the daughter partons relative
to the direction of the mother, the virtuality of the splitting, or the angle
between the daughter partons. We analyze the choice of the ordering variable
and conclude that one particular choice has the advantage of factoring softer
splittings from harder splittings graph by graph in a physical gauge.Comment: 28 pages, 5 figure
Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC
Precision studies of the production of a high-transverse momentum lepton in
association with missing energy at hadron colliders require that electroweak
and QCD higher-order contributions are simultaneously taken into account in
theoretical predictions and data analysis. Here we present a detailed
phenomenological study of the impact of electroweak and strong contributions,
as well as of their combination, to all the observables relevant for the
various facets of the p\smartpap \to {\rm lepton} + X physics programme at
hadron colliders, including luminosity monitoring and Parton Distribution
Functions constraint, precision physics and search for new physics signals.
We provide a theoretical recipe to carefully combine electroweak and strong
corrections, that are mandatory in view of the challenging experimental
accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC,
and discuss the uncertainty inherent the combination. We conclude that the
theoretical accuracy of our calculation can be conservatively estimated to be
about 2% for standard event selections at the Tevatron and the LHC, and about
5% in the very high transverse mass/lepton transverse momentum tails. We
also provide arguments for a more aggressive error estimate (about 1% and 3%,
respectively) and conclude that in order to attain a one per cent accuracy: 1)
exact mixed corrections should be computed in
addition to the already available NNLO QCD contributions and two-loop
electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be
coherently included into a single event generator.Comment: One reference added. Final version to appear in JHE
How do you say ‘hello’? Personality impressions from brief novel voices
On hearing a novel voice, listeners readily form personality impressions of that speaker. Accurate or not, these impressions are known to affect subsequent interactions; yet the underlying psychological and acoustical bases remain poorly understood. Furthermore, hitherto studies have focussed on extended speech as opposed to analysing the instantaneous impressions we obtain from first experience. In this paper, through a mass online rating experiment, 320 participants rated 64 sub-second vocal utterances of the word ‘hello’ on one of 10 personality traits. We show that: (1) personality judgements of brief utterances from unfamiliar speakers are consistent across listeners; (2) a two-dimensional ‘social voice space’ with axes mapping Valence (Trust, Likeability) and Dominance, each driven by differing combinations of vocal acoustics, adequately summarises ratings in both male and female voices; and (3) a positive combination of Valence and Dominance results in increased perceived male vocal Attractiveness, whereas perceived female vocal Attractiveness is largely controlled by increasing Valence. Results are discussed in relation to the rapid evaluation of personality and, in turn, the intent of others, as being driven by survival mechanisms via approach or avoidance behaviours. These findings provide empirical bases for predicting personality impressions from acoustical analyses of short utterances and for generating desired personality impressions in artificial voices
MIRO: A robot “Mammal” with a biomimetic brain-based control system
We describe the design of a novel commercial biomimetic brain-based robot, MIRO, developed as a prototype robot companion. The MIRO robot is animal-like in several aspects of its appearance, however, it is also biomimetic in a more significant way, in that its control architecture mimics some of the key principles underlying the design of the mammalian brain as revealed by neuroscience. Specifically, MIRO builds on decades of previous work in developing robots with brain-based control systems using a layered control architecture alongside centralized mechanisms for integration and action selection. MIRO’s control system operates across three core processors, P1-P3, that mimic aspects of spinal cord, brainstem, and forebrain functionality respectively. Whilst designed as a versatile prototype for next generation companion robots, MIRO also provides developers and researchers with a new platform for investigating the potential advantages of brain-based control
- …
