2,027 research outputs found
An improved method for the measurement of mechanical properties of bone by nanoindentation
Nanoindentation is widely used to measure the mechanical properties of bio-tissues. However, viscoelastic effects during the nanoindentation are seldom considered rigorously, although they are in general very significant in bio-tissues. In this study, a recently developed method for correcting the viscoelastic effects during nanoindentation is applied to mice bone samples. This method is found to yield reliable elastic modulus and hardness results from forelimb and femur cortical bone samples of C57 BL/6N and ICR mice. The creep properties of the samples are also characterized by a novel procedure using nanoindentation. The measured mechanical properties correlate well with the calcium content of the bone samples. © 2007 Springer Science+Business Media, LLC.postprin
Probabilistic segmentation of volume data for visualization using SOM-PNN classifier
We present a new probabilistic classifier, called SOM-PNN classifier, for volume data classification and visualization. The new classifier produces probabilistic classification with Bayesian confidence measure which is highly desirable in volume rendering. Based on the SOM map trained with a large training data set, our SOM-PNN classifier performs the probabilistic classification using the PNN algorithm. This combined use of SOM and PNN overcomes the shortcomings of the parametric methods, the nonparametric methods, and the SOM method. The proposed SOM-PNN classifier has been used to segment the CT sloth data and the 20 human MRI brain volumes resulting in much more informative 3D rendering with more details and less artifacts than other methods. Numerical comparisons demonstrate that the SOM-PNN classifier is a fast, accurate and probabilistic classifier for volume rendering.published_or_final_versio
BCI-FES training system design and implementation for rehabilitation of stroke patients
Author name used in this publication: Kai-yu TongAuthor name used in this publication: Suk-tak ChanRefereed conference paper2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
Cerebral plasticity after subcortical stroke as revealed by cortico-muscular coherence
Author name used in this publication: Kai-Yu TongAuthor name used in this publication: Suk-Tak Chan2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Identifying chemokines as therapeutic targets in renal disease: Lessons from antagonist studies and knockout mice
Chemokines, in concert with cytokines and adhesion molecules, play multiple roles in local and systemic immune responses. In the kidney, the temporal and spatial expression of chemokines correlates with local renal damage and accumulation of chemokine receptor-bearing leukocytes. Chemokines play important roles in leukocyte trafficking and blocking chemokines can effectively reduce renal leukocyte recruitment and subsequent renal damage. However, recent data indicate that blocking chemokine or chemokine receptor activity in renal disease may also exacerbate renal inflammation under certain conditions. An increasing amount of data indicates additional roles of chemokines in the regulation of innate and adaptive immune responses, which may adversively affect the outcome of interventional studies. This review summarizes available in vivo studies on the blockade of chemokines and chemokine receptors in kidney diseases, with a special focus on the therapeutic potential of anti-chemokine strategies, including potential side effects, in renal disease. Copyright (C) 2004 S. Karger AG, Basel
The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.
BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury
Principles of early human development and germ cell program from conserved model systems
Human primordial germ cells (hPGCs), the precursors of sperm and eggs, originate during week 2-3 of early postimplantation development(1). Using in vitro models of hPGC induction(2-4), recent studies suggest striking mechanistic differences in specification of human and mouse PGCs(5). This may partly be due to the divergence in their pluripotency networks, and early postimplantation development(6-8). Since early human embryos are inaccessible for direct studies, we considered alternatives, including porcine embryos that, as in humans, develop as bilaminar embryonic discs. Here we show that porcine PGCs (pPGCs) originate from the posterior pre-primitive streak competent epiblast by sequential upregulation of SOX17 and BLIMP1 in response to WNT and BMP signalling. Together with human and monkey in vitro models simulating peri-gastrulation development, we show conserved principles for epiblast development for competency for PGC fate, followed by initiation of the epigenetic program(9-11), regulated by a balanced SOX17–BLIMP1 gene dosage. Our combinatorial approach using human, porcine and monkey in vivo and in vitro models, provides synthetic insights on early human development
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
Design of Experiments for Screening
The aim of this paper is to review methods of designing screening
experiments, ranging from designs originally developed for physical experiments
to those especially tailored to experiments on numerical models. The strengths
and weaknesses of the various designs for screening variables in numerical
models are discussed. First, classes of factorial designs for experiments to
estimate main effects and interactions through a linear statistical model are
described, specifically regular and nonregular fractional factorial designs,
supersaturated designs and systematic fractional replicate designs. Generic
issues of aliasing, bias and cancellation of factorial effects are discussed.
Second, group screening experiments are considered including factorial group
screening and sequential bifurcation. Third, random sampling plans are
discussed including Latin hypercube sampling and sampling plans to estimate
elementary effects. Fourth, a variety of modelling methods commonly employed
with screening designs are briefly described. Finally, a novel study
demonstrates six screening methods on two frequently-used exemplars, and their
performances are compared
MicroRNA-377 suppresses initiation and progression of esophageal cancer by inhibiting CD133 and VEGF
published_or_final_versio
- …
