709 research outputs found
Dynamics of CrO3–Fe2O3 catalysts during the high-temperature water-gas shift reaction: molecular structures and reactivity
A series of supported CrO3/Fe2O3 catalysts were investigated for the high-temperature water-gas shift (WGS) and reverse-WGS reactions and extensively characterized using in situ and operando IR, Raman, and XAS spectroscopy during the high-temperature WGS/RWGS reactions. The in situ spectroscopy examinations reveal that the initial oxidized catalysts contain surface dioxo (O═)2Cr6+O2 species and a bulk Fe2O3 phase containing some Cr3+ substituted into the iron oxide bulk lattice. Operando spectroscopy studies during the high-temperature WGS/RWGS reactions show that the catalyst transforms during the reaction. The crystalline Fe2O3 bulk phase becomes Fe3O4 ,and surface dioxo (O═)2Cr6+O2 species are reduced and mostly dissolve into the iron oxide bulk lattice. Consequently, the chromium–iron oxide catalyst surface is dominated by FeOx sites, but some minor reduced surface chromia sites are also retained. The Fe3–-xCrxO4 solid solution stabilizes the iron oxide phase from reducing to metallic Fe0 and imparts an enhanced surface area to the catalyst. Isotopic exchange studies with C16O2/H2 → C18O2/H2 isotopic switch directly show that the RWGS reaction proceeds via the redox mechanism and only O* sites from the surface region of the chromium–iron oxide catalysts are involved in the RWGS reaction. The number of redox O* sites was quantitatively determined with the isotope exchange measurements under appropriate WGS conditions and demonstrated that previous methods have undercounted the number of sites by nearly 1 order of magnitude. The TOF values suggest that only the redox O* sites affiliated with iron oxide are catalytic active sites for WGS/RWGS, though a carbonate oxygen exchange mechanism was demonstrated to exist, and that chromia is only a textural promoter that increases the number of catalytic active sites without any chemical promotion effect
Quantum-well states in ultrathin Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces
Ag(111) films were deposited at room temperature onto H-passivated
Si(111)-(1x1) substrates, and subsequently annealed at 300 C. An abrupt
non-reactive Ag/Si interface is formed, and very uniform non-strained Ag(111)
films of 6-12 monolayers have been grown. Angle resolved photoemission
spectroscopy has been used to study the valence band electronic properties of
these films. Well-defined Ag sp quantum-well states (QWS) have been observed at
discrete energies between 0.5-2eV below the Fermi level, and their dispersions
have been measured along the GammaK, GammaMM'and GammaL symmetry directions.
QWS show a parabolic bidimensional dispersion, with in-plane effective mass of
0.38-0.50mo, along the GammaK and GammaMM' directions, whereas no dispersion
has been found along the GammaL direction, indicating the low-dimensional
electronic character of these states. The binding energy dependence of the QWS
as a function of Ag film thickness has been analyzed in the framework of the
phase accumulation model. According to this model, a reflectivity of 70% has
been estimated for the Ag-sp states at the Ag/H/Si(111)-(1x1) interface.Comment: 6 pages, 6 figures, submitted to Phys. Rev.
Electronic properties and Fermi surface of Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces
Silver films were deposited at room temperature onto H-passivated Si(111)
surfaces. Their electronic properties have been analyzed by angle-resolved
photoelectron spectroscopy. Submonolayer films were semiconducting and the
onset of metallization was found at a Ag coverage of 0.6 monolayers. Two
surface states were observed at -point in the metallic films,
with binding energies of 0.1 and 0.35 eV. By measurements of photoelectron
angular distribution at the Fermi level in these films, a cross-sectional cut
of the Fermi surface was obtained. The Fermi vector determined along different
symmetry directions and the photoelectron lifetime of states at the Fermi level
are quite close to those expected for Ag single crystal. In spite of this
concordance, the Fermi surface reflects a sixfold symmetry rather than the
threefold symmetry of Ag single crystal. This behavior was attributed to the
fact that these Ag films are composed by two domains rotated 60.Comment: 9 pages, 8 figures, submitted to Physical Review
Putting context to numbers : a geotechnical risk trajectory to cost overrun extremism
The study investigates the cause of the unusually high cost overruns experienced
in highway project delivery in the tropical wetland setting of the Niger Delta
region of Nigeria. This is in view of the extensive literature supporting the link
between geology, the lack of geotechnical best practices and cost overruns. An
empirical profiling of cost overrun research further reveals the predominance of
mono-method studies based on survey methods, correlative analysis and archival
data modelling techniques, all of which are underlain by positivism. The study
argues that such positivist philosophies, although methodologically valid, cannot
adequately explain and provide in-depth understanding of the contextual cost
overrun drivers in highway organisations., Using a robust and thoughtfully
designed mix of methods, the paper examines the contribution of geotechnical
risks to cost overruns experienced in highway project, and demonstrates the
relevance of context in cost overrun research. Cost overrun data from
documentary sources for 61 completed highway projects in the Niger Delta are
gathered and analysed, revealing an average value of 216%, with extreme cases,
ranging up to 1925% of budgeted cost. To uncover the intrinsic contextual
drivers, 16 interviews were conducted with participants from the three highway
agencies in the region, responsible for the execution of the sampled highway
projects. Adopting a geotechnical narrative, the data is thematically analysed,
deductively and inductively. The results of the analysis identified that poor
project governance, management and procurement practices, have inhibited the
competent management of geotechnical risk, creating a propensity for extreme
cost overruns on the highway projects. The study submits the phenomenon of
cost overruns in public infrastructure projects is underlain by a complexity of
contextual social constructs, which would have been overlooked in positivists
studies. Cost overrun research therefore, needs to be contextually and
numerically anchored.
Keywords: Context, Cost overruns, Highway projects, Mixed methods, Social
Construct
Sub-surface Oxygen and Surface Oxide Formation at Ag(111): A Density-functional Theory Investigation
To help provide insight into the remarkable catalytic behavior of the
oxygen/silver system for heterogeneous oxidation reactions, purely sub-surface
oxygen, and structures involving both on-surface and sub-surface oxygen, as
well as oxide-like structures at the Ag(111) surface have been studied for a
wide range of coverages and adsorption sites using density-functional theory.
Adsorption on the surface in fcc sites is energetically favorable for low
coverages, while for higher coverage a thin surface-oxide structure is
energetically favorable. This structure has been proposed to correspond to the
experimentally observed (4x4) phase. With increasing O concentrations, thicker
oxide-like structures resembling compressed Ag2O(111) surfaces are
energetically favored. Due to the relatively low thermal stability of these
structures, and the very low sticking probability of O2 at Ag(111), their
formation and observation may require the use of atomic oxygen (or ozone, O3)
and low temperatures. We also investigate diffusion of O into the sub-surface
region at low coverage (0.11 ML), and the effect of surface Ag vacancies in the
adsorption of atomic oxygen and ozone-like species. The present studies,
together with our earlier investigations of on-surface and
surface-substitutional adsorption, provide a comprehensive picture of the
behavior and chemical nature of the interaction of oxygen and Ag(111), as well
as of the initial stages of oxide formation.Comment: 17 pages including 14 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
A multi-modal network approach to model public transport accessibility impacts of bicycle-train integration policies
In the Netherlands, the bicycle plays an important in station access and, to a lesser extent, in station egress. There is however fairly little knowledge in the potential effects of bicycle-train integration policies. The aim of this paper is to examine the impacts of bicycle-train integration policies on train ridership and job accessibility for public transport users.MethodsWe extended the Dutch National Transport Model (NVM) by implementing a detailed bicycle network linked to the public transport network, access/egress mode combinations and station specific access and egress penalties by mode and station type derived from a stated choice survey. Furthermore, the effects of several bicycletrain integration policy scenarios were examined for a case study for Randstad South, in the Netherlands, comprising a dense train network with 54 train stations.ConclusionsOur analysis shows that improving the quality of bicycle routes and parking can substantially increase train ridership and potential job accessibility for train users. Large and medium stations are more sensitive to improvements in bicycle-train integration policies, while small stations are more sensitive to improvements in the train level of service
Quantitative learning strategies based on word networks
Learning English requires a considerable effort, but the way that vocabulary is introduced in textbooks is not optimized for learning efficiency. With the increasing population of English learners, learning process optimization will have significant impact and improvement towards English learning and teaching. The recent developments of big data analysis and complex network science provide additional opportunities to design and further investigate the strategies in English learning. In this paper, quantitative English learning strategies based on word network and word usage information are proposed. The strategies integrate the words frequency with topological structural information. By analyzing the influence of connected learned words, the learning weights for the unlearned words and dynamically updating of the network are studied and analyzed. The results suggest that quantitative strategies significantly improve learning efficiency while maintaining effectiveness. Especially, the optimized-weight-first strategy and segmented strategies outperform other strategies. The results provide opportunities for researchers and practitioners to reconsider the way of English teaching and designing vocabularies quantitatively by balancing the efficiency and learning costs based on the word network
Problematic practice in integrated impact assessment: the role of consultants and predictive computer models in burying uncertainty
It is well known in impact assessment that predictive model outputs will be as credible as their inputs and that model assumptions will drive outputs. What is less well known is how the practice of integrated impact assessment with its pervasive use of predictive computer models and multiple teams of consultants can influence evidence relied upon in deliberations over the impacts and benefits of major projects. This paper draws on an integrated impact assessment of a major energy infrastructure project in Australia known as Basslink to examine the epistemic implications of current practice. It will be argued that what has become standard procedure can serve to diminish the disclosure of prediction uncertainty
Strong Metal–Support Interactions between Copper and Iron Oxide during the High‐Temperature Water‐Gas Shift Reaction
The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts
Recommended from our members
Technology Options for a Fast Spectrum Test Reactor
Idaho National Laboratory in collaboration with Argonne National Laboratory has evaluated technology options for a new fast spectrum reactor to meet the fast-spectrum irradiation requirements for the USDOE Generation IV (Gen IV) and Advanced Fuel Cycle Initiative (AFCI) programs. The US currently has no capability for irradiation testing of large volumes of fuels or materials in a fast-spectrum reactor required to support the development of Gen IV fast reactor systems or to demonstrate actinide burning, a key element of the AFCI program. The technologies evaluated and the process used to select options for a fast irradiation test reactor (FITR) for further evaluation to support these programmatic objectives are outlined in this paper
- …
