84 research outputs found
A rare exception to Haldane's rule: are X chromosomes key to hybrid incompatibilities?
This work was funded by NERC (NE/G014906/1, NE/L011255/1, NE/I027800/1). Additional funding from the Orthopterists’ Society to PM is also gratefully acknowledged.The prevalence of Haldane’s rule suggests that sex chromosomes commonly have a key role in reproductive barriers and speciation. However, the majority of research on Haldane’s rule has been conducted in species with conventional sex determination systems (XY and ZW) and exceptions to the rule have been understudied. Here we test the role of X-linked incompatibilities in a rare exception to Haldane’s rule for female sterility in field cricket sister species (Teleogryllus oceanicus and T. commodus). Both have an XO sex determination system. Using three generations of crosses, we introgressed X chromosomes from each species onto different, mixed genomic backgrounds to test predictions about the fertility and viability of each cross type. We predicted that females with two different species X chromosomes would suffer reduced fertility and viability compared with females with two parental X chromosomes. However, we found no strong support for such X-linked incompatibilities. Our results preclude X–X incompatibilities and instead support an interchromosomal epistatic basis to hybrid female sterility. We discuss the broader implications of these findings, principally whether deviations from Haldane’s rule might be more prevalent in species without dimorphic sex chromosomes.PostprintPeer reviewe
Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements
Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines
Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements
Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines
Grasping isoluminant stimuli
We used a virtual reality setup to let participants grasp discs, which differed in luminance, chromaticity and size. Current theories on perception and action propose a division of labor in the brain into a color proficient perception pathway and a less color-capable action pathway. In this study, we addressed the question whether isoluminant stimuli, which provide only a chromatic but no luminance contrast for action planning, are harder to grasp than stimuli providing luminance contrast or both kinds of contrast. Although we found that grasps of isoluminant stimuli had a slightly steeper slope relating the maximum grip aperture to disc size, all other measures of grip quality were unaffected. Overall, our results do not support the view that isoluminance of stimulus and background impedes the planning of a grasping movement
The scale, governance, and sustainability of central places in pre-Hispanic Mesoamerica
Examinations of the variation and relative successes or failures of past large-scale societies have long involved attempts to reconcile efforts at generalization and the identification of specific factors with explanatory value for regional trajectories. Although historical particulars are critical to understanding individual cases, there are both scholarly and policy rationales for drawing broader implications regarding the growing corpus of cross-cultural data germane to understanding variability in the constitution of human societies, past and present. Archaeologists have recently highlighted how successes and failures in communal-resource management can be studied over the long term through the material record to both engage and enhance transdisciplinary research on cooperation and collective action. In this article we consider frameworks that have been traditionally employed in studies of the rise, diversity, and fall of preindustrial urban aggregations. We suggest that a comparative theoretical perspective that foregrounds collective-action problems, unaligned individual and group interests, and the social mechanisms that promote or hamper cooperation advances our understanding of variability in these early cooperative arrangements. We apply such a perspective to an examination of pre-Hispanic Mesoamerican urban centers to demonstrate tendencies for more collective systems to be larger and longer lasting than less collective ones, likely reflecting greater sustainability in the face of the ecological and cultural perturbations specific to the region and era.Accepted manuscrip
Analysis of paediatric visual acuity using Bayesian copula models with sinh-arcsinh marginal densities
We analyse paediatric ophthalmic data from a large sample of children aged between 3 and 8 years. We modify the Bayesian additive conditional bivariate copula regression model of Klein and Kneib [1] by using sinh-arcsinh marginal densities with location, scale and shape parameters that depend smoothly on a covariate. We perform Bayesian inference about the unknown quantities of our model using a specially tailored Markov chain Monte Carlo algorithm. We gain new insights about the processes which determine transformations in visual acuity with respect to age, including the nature of joint changes in both eyes as modelled with the age-related copula dependence parameter. We analyse posterior predictive distributions to identify children with unusual sight characteristics, distinguishing those who are bivariate, but not univariate outliers. In this way we provide an innovative tool that enables clinicians to identify children with unusual sight who may otherwise be missed. We compare our simultaneous Bayesian method with the two-step frequentist generalized additive modelling approach of Vatter and Chavez-Demoulin [2]
Effect of hormone injection frequency on the lipid content and fatty acid compositions in gonad, muscle and liver of Anguilla japonica during artificial maturation
ATR-FTIR spectroscopy non-destructively detects damage-induced sour rot infection in whole tomato fruit
Main conclusion
ATR-FTIR spectroscopy with subsequent multivariate analysis non-destructively identifies plant–pathogen interactions during disease progression, both directly and indirectly, through alterations in the spectral fingerprint.
Plant–environment interactions are essential to understanding crop biology, optimizing crop use, and minimizing loss to ensure food security. Damage-induced pathogen infection of delicate fruit crops such as tomato (Solanum lycopersicum) are therefore important processes related to crop biology and modern horticulture. Fruit epidermis as a first barrier at the plant–environment interface, is specifically involved in environmental interactions and often shows substantial structural and functional changes in response to unfavourable conditions. Methods available to investigate such systems in their native form, however, are limited by often required and destructive sample preparation, or scarce amounts of molecular level information. To explore biochemical changes and evaluate diagnostic potential for damage-induced pathogen infection of cherry tomato (cv. Piccolo) both directly and indirectly, mid-infrared (MIR) spectroscopy was applied in combination with exploratory multivariate analysis. ATR-FTIR fingerprint spectra (1800–900 cm−1) of healthy, damaged or sour rot-infected tomato fruit were acquired and distinguished using principal component analysis and linear discriminant analysis (PCA–LDA). Main biochemical constituents of healthy tomato fruit epidermis are characterized while multivariate analysis discriminated subtle biochemical changes distinguishing healthy tomato from damaged, early or late sour rot-infected tomato indirectly based solely on changes in the fruit epidermis. Sour rot causing agent Geotrichum candidum was detected directly in vivo and characterized based on spectral features distinct from tomato fruit. Diagnostic potential for indirect pathogen detection based on tomato fruit skin was evaluated using the linear discriminant classifier (PCA–LDC). Exploratory and diagnostic analysis of ATR-FTIR spectra offers biological insights and detection potential for intact plant–pathogen systems as they are found in horticultural industries
Allocation techniques for balance at baseline in cluster randomized trials: a methodological review
- …
