574 research outputs found

    Towards a neural hierarchy of time scales for motor control

    Get PDF
    Animals show remarkable rich motion skills which are still far from realizable with robots. Inspired by the neural circuits which generate rhythmic motion patterns in the spinal cord of all vertebrates, one main research direction points towards the use of central pattern generators in robots. On of the key advantages of this, is that the dimensionality of the control problem is reduced. In this work we investigate this further by introducing a multi-timescale control hierarchy with at its core a hierarchy of recurrent neural networks. By means of some robot experiments, we demonstrate that this hierarchy can embed any rhythmic motor signal by imitation learning. Furthermore, the proposed hierarchy allows the tracking of several high level motion properties (e.g.: amplitude and offset), which are usually observed at a slower rate than the generated motion. Although these experiments are preliminary, the results are promising and have the potential to open the door for rich motor skills and advanced control

    Feedback control by online learning an inverse model

    Get PDF
    A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the plant. This framework uses two learning modules, one for creating an inverse model, and the other for actually controlling the plant. Except for their inputs, they are identical. The inverse model learns by the exploration performed by the not yet fully trained controller, while the actual controller is based on the currently learned model. The proposed framework allows fast online learning of an accurate controller. The controller can be applied on a broad range of tasks with different dynamic characteristics. We validate this claim by applying our control framework on several control tasks: 1) the heating tank problem (slow nonlinear dynamics); 2) flight pitch control (slow linear dynamics); and 3) the balancing problem of a double inverted pendulum (fast linear and nonlinear dynamics). The results of these experiments show that fast learning and accurate control can be achieved. Furthermore, a comparison is made with some classical control approaches, and observations concerning convergence and stability are made

    On label dependence in multilabel classification

    Get PDF

    An analysis of chaining in multi-label classification

    Get PDF
    The idea of classifier chains has recently been introduced as a promising technique for multi-label classification. However, despite being intuitively appealing and showing strong performance in empirical studies, still very little is known about the main principles underlying this type of method. In this paper, we provide a detailed probabilistic analysis of classifier chains from a risk minimization perspective, thereby helping to gain a better understanding of this approach. As a main result, we clarify that the original chaining method seeks to approximate the joint mode of the conditional distribution of label vectors in a greedy manner. As a result of a theoretical regret analysis, we conclude that this approach can perform quite poorly in terms of subset 0/1 loss. Therefore, we present an enhanced inference procedure for which the worst-case regret can be upper-bounded far more tightly. In addition, we show that a probabilistic variant of chaining, which can be utilized for any loss function, becomes tractable by using Monte Carlo sampling. Finally, we present experimental results confirming the validity of our theoretical findings

    A discrete/rhythmic pattern generating RNN

    Get PDF
    Biological research supports the concept that advanced motion emerges from modular building blocks, which generate both rhythmical and discrete patterns. Inspired by these ideas, roboticists try to implement such building blocks using different techniques. In this paper, we show how to build such module by using a recurrent neural network (RNN) to encapsulate both discrete and rhythmical motion patterns into a single network. We evaluate the proposed system on a planar robotic manipulator. For training, we record several handwriting motions by back driving the robot manipulator. Finally, we demonstrate the ability to learn multiple motions (even discrete and rhythmic) and evaluate the pattern generation robustness in the presence of perturbations

    A Comparative Study of Pairwise Learning Methods based on Kernel Ridge Regression

    Full text link
    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction or network inference problems. During the last decade kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify existing kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency and spectral filtering properties. Our theoretical results provide valuable insights in assessing the advantages and limitations of existing pairwise learning methods.Comment: arXiv admin note: text overlap with arXiv:1606.0427

    Comparing trotting and turning strategies on the quadrupedal Oncilla Robot

    Get PDF
    In this paper, we compare three different trotting techniques and five different turning strategies on a small, compliant, biologically inspired quadrupedal robot, the Oncilla. The locomotion techniques were optimized on the actual hardware using a treadmill setup, without relying on models. We found that using half ellipses as foot trajectories resulted in the fastest gaits, as well as the highest robustness against parameter changes. Furthermore, we analyzed the importance of using the scapulae for turning, from which we observed that although not necessary, they are needed for turning with a higher speed
    corecore