150 research outputs found

    The effect of exposure conditions on the perceptual learning of a discrimination task

    Full text link
    Thesis (Ed.D.)--Boston Universit

    The experience of doing well in older nursing home residents: Bringing the past to the present

    Get PDF
    Though discussions of well-being and quality of life for older adults in American nursing homes have flourished over the past decade, relatively few studies have explored these notions from the perspective of older residents themselves. The purpose of this research is to understand experiences and perceptions of doing well in older nursing home residents

    Oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism via neuropeptide signaling in <i>Caenorhabditis elegans</i>

    Get PDF
    <div><p>The mechanisms by which the sensory environment influences metabolic homeostasis remains poorly understood. In this report, we show that oxygen, a potent environmental signal, is an important regulator of whole body lipid metabolism. <i>C</i>. <i>elegans</i> oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism under normoxia in the following way: under high oxygen and food absence, URX sensory neurons are activated, and stimulate fat loss in the intestine, the major metabolic organ for <i>C</i>. <i>elegans</i>. Under lower oxygen conditions or when food is present, the BAG sensory neurons respond by repressing the resting properties of the URX neurons. A genetic screen to identify modulators of this effect led to the identification of a BAG-neuron-specific neuropeptide called FLP-17, whose cognate receptor EGL-6 functions in URX neurons. Thus, BAG sensory neurons counterbalance the metabolic effect of tonically active URX neurons via neuropeptide communication. The combined regulatory actions of these neurons serve to precisely tune the rate and extent of fat loss to the availability of food and oxygen, and provides an interesting example of the myriad mechanisms underlying homeostatic control.</p></div

    Imaging of single barium atoms in a second matrix site in solid xenon for barium tagging in a 136^{136}Xe double beta decay experiment

    Full text link
    Neutrinoless double beta decay is one of the most sensitive probes for new physics beyond the Standard Model of particle physics. One of the isotopes under investigation is 136^{136}Xe, which would double beta decay into 136^{136}Ba. Detecting the single 136^{136}Ba daughter provides a sort of ultimate tool in the discrimination against backgrounds. Previous work demonstrated the ability to perform single atom imaging of Ba atoms in a single-vacancy site of a solid xenon matrix. In this paper, the effort to identify signal from individual barium atoms is extended to Ba atoms in a hexa-vacancy site in the matrix and is achieved despite increased photobleaching in this site. Abrupt fluorescence turn-off of a single Ba atom is also observed. Significant recovery of fluorescence signal lost through photobleaching is demonstrated upon annealing of Ba deposits in the Xe ice. Following annealing, it is observed that Ba atoms in the hexa-vacancy site exhibit antibleaching while Ba atoms in the tetra-vacancy site exhibit bleaching. This may be evidence for a matrix site transfer upon laser excitation. Our findings offer a path of continued research toward tagging of Ba daughters in all significant sites in solid xenon.Comment: 9 pages, 8 figure

    Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO

    Full text link
    Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0νββ\nu \beta \beta), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0νββ\nu \beta \beta of \ce{^{136}Xe} with projected half-life sensitivity of 1.35×10281.35\times 10^{28}~yr. To reach this sensitivity, the design goal for nEXO is \leq1\% energy resolution at the decay QQ-value (2458.07±0.312458.07\pm 0.31~keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163~K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay QQ-value for the nEXO design

    An integrated online radioassay data storage and analytics tool for nEXO

    Full text link
    Large-scale low-background detectors are increasingly used in rare-event searches as experimental collaborations push for enhanced sensitivity. However, building such detectors, in practice, creates an abundance of radioassay data especially during the conceptual phase of an experiment when hundreds of materials are screened for radiopurity. A tool is needed to manage and make use of the radioassay screening data to quantitatively assess detector design options. We have developed a Materials Database Application for the nEXO experiment to serve this purpose. This paper describes this database, explains how it functions, and discusses how it streamlines the design of the experiment
    corecore