261 research outputs found

    Nonlocality, Asymmetry, and Distinguishing Bipartite States

    Get PDF
    Entanglement is an useful resource because some global operations cannot be locally implemented using classical communication. We prove a number of results about what is and is not locally possible. We focus on orthogonal states, which can always be globally distinguished. We establish the necessary and sufficient conditions for a general set of 2x2 quantum states to be locally distinguishable, and for a general set of 2xn quantum states to be distinguished given an initial measurement of the qubit. These results reveal a fundamental asymmetry to nonlocality, which is the origin of ``nonlocality without entanglement'', and we present a very simple proof of this phenomenon.Comment: 5 pages, 1 figure. Improved in line with referees comments, references added, typo corrected. To appear in Phys. Rev. Let

    Holism, Physical Theories and Quantum Mechanics

    Get PDF
    Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism'. For this purpose I propose an epistemological criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if it is impossible in principle to infer the global properties, as assigned in the theory, by local resources available to an agent. I propose that these resources include at least all local operations and classical communication. This approach is contrasted with the well-known approaches to holism in terms of supervenience. The criterion for holism proposed here involves a shift in emphasis from ontology to epistemology. I apply this epistemological criterion to classical physics and Bohmian mechanics as represented on a phase and configuration space respectively, and for quantum mechanics (in the orthodox interpretation) using the formalism of general quantum operations as completely positive trace non-increasing maps. Furthermore, I provide an interesting example from which one can conclude that quantum mechanics is holistic in the above mentioned sense, although, perhaps surprisingly, no entanglement is needed.Comment: Published versio

    Optimal Conclusive Discrimination of Two Non-orthogonal Pure Product Multipartite States Locally

    Full text link
    We consider one copy of a quantum system prepared in one of two non-orthogonal pure product states of multipartite distributed among separated parties. We show that there exist protocols which obtain optimal probability in the sense of conclusive discrimination by means of local operations and classical communications(LOCC) as good as by global operations. Also, we show a protocol which minimezes the average number of local operations. Our result implies that two product pure multipartite states might not have the non-local property though more than two can have.Comment: revtex, 3 pages, no figur

    Classical and quantum fingerprinting with shared randomness and one-sided error

    Full text link
    Within the simultaneous message passing model of communication complexity, under a public-coin assumption, we derive the minimum achievable worst-case error probability of a classical fingerprinting protocol with one-sided error. We then present entanglement-assisted quantum fingerprinting protocols attaining worst-case error probabilities that breach this bound.Comment: 10 pages, 1 figur

    Distinguishing two-qubit states using local measurements and restricted classical communication

    Get PDF
    The problem of unambiguous state discrimination consists of determining which of a set of known quantum states a particular system is in. One is allowed to fail, but not to make a mistake. The optimal procedure is the one with the lowest failure probability. This procedure has been extended to bipartite states where the two parties, Alice and Bob, are allowed to manipulate their particles locally and communicate classically in order to determine which of two possible two-particle states they have been given. The failure probability of this local procedure has been shown to be the same as if the particles were together in the same location. Here we examine the effect of restricting the classical communication between the parties, either allowing none or eliminating the possibility that one party's measurement depends on the result of the other party's. These issues are studied for two-qubit states, and optimal procedures are found. In some cases the restrictions cause increases in the failure probability, but in other cases they do not. Applications of these procedures, in particular to secret sharing, are discussed.Comment: 18 pages, two figure

    Generic local distinguishability and completely entangled subspaces

    Get PDF
    A subspace of a multipartite Hilbert space is completely entangled if it contains no product states. Such subspaces can be large with a known maximum size, S, approaching the full dimension of the system, D. We show that almost all subspaces with dimension less than or equal to S are completely entangled, and then use this fact to prove that n random pure quantum states are unambiguously locally distinguishable if and only if n does not exceed D-S. This condition holds for almost all sets of states of all multipartite systems, and reveals something surprising. The criterion is identical for separable and for nonseparable states: entanglement makes no difference.Comment: 12 page

    Mixture of multiple copies of maximally entangled states is quasi-pure

    Full text link
    Employing the general BXOR operation and local state discrimination, the mixed state of the form \rho^{(k)}_{d}=\frac{1}{d^{2}}\sum_{m,n=0}^{d-1}(|\phi_{mn}><\phi_{mn}|)^{\otim es k} is proved to be quasi-pure, where {ϕmn>}\{|\phi_{mn}>\} is the canonical set of mutually orthogonal maximally entangled states in d×dd\times d. Therefore irreversibility does not occur in the process of distillation for this family of states. Also, the distillable entanglement is calculated explicitly.Comment: 6 pages, 1 figure. The paper is subtantially revised and the general proof is give

    A note on the optimality of decomposable entanglement witnesses and completely entangled subspaces

    Full text link
    Entanglement witnesses (EWs) constitute one of the most important entanglement detectors in quantum systems. Nevertheless, their complete characterization, in particular with respect to the notion of optimality, is still missing, even in the decomposable case. Here we show that for any qubit-qunit decomposable EW (DEW) W the three statements are equivalent: (i) the set of product vectors obeying \bra{e,f}W\ket{e,f}=0 spans the corresponding Hilbert space, (ii) W is optimal, (iii) W=Q^{\Gamma} with Q denoting a positive operator supported on a completely entangled subspace (CES) and \Gamma standing for the partial transposition. While, implications (i)(ii)(i)\Rightarrow(ii) and (ii)(iii)(ii)\Rightarrow(iii) are known, here we prove that (iii) implies (i). This is a consequence of a more general fact saying that product vectors orthogonal to any CES in C^{2}\otimes C^{n} span after partial conjugation the whole space. On the other hand, already in the case of C^{3}\otimes C^{3} Hilbert space, there exist DEWs for which (iii) does not imply (i). Consequently, either (i) does not imply (ii), or (ii) does not imply (iii), and the above transparent characterization obeyed by qubit-qunit DEWs, does not hold in general.Comment: 13 pages, proof of lemma 4 corrected, theorem 3 removed, some parts improve

    Optimally Conclusive Discrimination of Non-orthogonal Entangled States Locally

    Get PDF
    We consider one copy of a quantum system prepared with equal prior probability in one of two non-orthogonal entangled states of multipartite distributed among separated parties. We demonstrate that these two states can be optimally distinguished in the sense of conclusive discrimination by local operations and classical communications(LOCC) alone. And this proves strictly the conjecture that Virmani et.al. [8] confirmed numerically and analytically. Generally, the optimal protocol requires local POVM operations which are explicitly constructed. The result manifests that the distinguishable information is obtained only and completely at the last operation and all prior ones give no information about that state.Comment: 4 pages, no figure, revtex. few typos correcte
    corecore