1,394 research outputs found
Le couteau dans la plaie : une amitié qui n'en finit pas de finir
[First paragraph] La publication intégrale des lettres échangées par André Gide et Henri
de Régnier restitue le deuxième volet à ce tableau dont David Niederauer
avait pu présenter le panneau Régnier en 1972. Nous avons donc de
nouvelles raisons de regretter la fin de cette amitié littéraire qui vit les
deux écrivains s’éloigner l’un de l’autre à la suite d’un article malencontreux
que Gide écrivit pour La Revue Blanche du premier mai 1900, à
propos de La Double Maîtresse. Le froid que provoqua le jugement de
Gide — qui s’était laissé entraîner, nous dit-il, par la désapprobation impétueuse
dont avait témoigné Viélé-Griffin à l’égard du livre de Régnier
— l’amena à regretter « cordialement » cette « erreur assez grave ».
Les éditeurs de la nouvelle édition de la Correspondance présentent une
lettre inédite de Francis Jammes, qui, apprenons-nous, s’évertua à adoucir
le ressentiment d’un Régnier ombrageux (pp. 15-17). Nonobstant cette
intervention de poids, ce dernier ne devait jamais pardonner à Gide son
jugement qui, faisant pressentir un déclin par rapport à l’oeuvre précédente, ne péchait peut-être que par prescience ... Ainsi, à partir de cette
date les lettres se font de plus en plus rares, pour cesser complètement
malgré une dernière lettre d’avril 1911 où Gide, touché par l’amabilité
dont Régnier venait de faire preuve à l’égard de Copeau et de la Nouvelle
Revue Française, essaie en vain de ranimer l’affection qu’ils s’étaient
portée naguère (pp. 271-2)
The Supernova Relic Neutrino Background
An upper bound to the supernova relic neutrino background from all past Type
II supernovae is obtained using observations of the Universal metal enrichment
history. We show that an unambiguous detection of these relic neutrinos by the
Super-Kamiokande detector is unlikely. We also analyze the event rate in the
Sudbury Neutrino Observatory (where coincident neutrons from anti-nu_e + D -->
n + n + e+ might enhance background rejection), and arrive at the same
conclusion. If the relic neutrino flux should be observed to exceed our upper
bound and if the observations of the metal enrichment history (for z<1) are not
in considerable error, then either the Type II supernova rate does not track
the metal enrichment history or some mechanism may be responsible for
transforming anti-nu_{mu,tau} --> anti-nu_e.Comment: Matches version accepted for publication in Phys. Rev.
Nucleon Charge and Magnetization Densities from Sachs Form Factors
Relativistic prescriptions relating Sachs form factors to nucleon charge and
magnetization densities are used to fit recent data for both the proton and the
neutron. The analysis uses expansions in complete radial bases to minimize
model dependence and to estimate the uncertainties in radial densities due to
limitation of the range of momentum transfer. We find that the charge
distribution for the proton is significantly broad than its magnetization
density and that the magnetization density is slightly broader for the neutron
than the proton. The neutron charge form factor is consistent with the Galster
parametrization over the available range of Q^2, but relativistic inversion
produces a softer radial density. Discrete ambiguities in the inversion method
are analyzed in detail. The method of Mitra and Kumari ensures compatibility
with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have
been added and several discussions have been clarified with no significant
changes to the conclusions. Now contains 47 pages including 21 figures and 2
table
Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disorders
Validating the potential pathogenicity of copy number variants (CNVs) identified in genome-wide studies of autism spectrum disorders (ASD) requires detailed assessment of case/control frequencies, inheritance patterns, clinical correlations, and functional impact. Here, we characterize a small recurrent duplication in the annexin A1 (ANXA1) gene, identified by the Autism Genome Project (AGP) study
Signatures of Relativistic Neutrinos in CMB Anisotropy and Matter Clustering
We present a detailed analytical study of ultra-relativistic neutrinos in
cosmological perturbation theory and of the observable signatures of
inhomogeneities in the cosmic neutrino background. We note that a modification
of perturbation variables that removes all the time derivatives of scalar
gravitational potentials from the dynamical equations simplifies their solution
notably. The used perturbations of particle number per coordinate, not proper,
volume are generally constant on superhorizon scales. In real space an
analytical analysis can be extended beyond fluids to neutrinos.
The faster cosmological expansion due to the neutrino background changes the
acoustic and damping angular scales of the cosmic microwave background (CMB).
But we find that equivalent changes can be produced by varying other standard
parameters, including the primordial helium abundance. The low-l integrated
Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of
neutrino perturbations suppresses the CMB acoustic peaks for the multipoles
with l>~200 while it enhances the amplitude of matter fluctuations on these
scales. In addition, the perturbations of relativistic neutrinos generate a
*unique phase shift* of the CMB acoustic oscillations that for adiabatic
initial conditions cannot be caused by any other standard physics. The origin
of the shift is traced to neutrino free-streaming velocity exceeding the sound
speed of the photon-baryon plasma. We find that from a high resolution, low
noise instrument such as CMBPOL the effective number of light neutrino species
can be determined with an accuracy of sigma(N_nu) = 0.05 to 0.09, depending on
the constraints on the helium abundance.Comment: 38 pages, 7 figures. Version accepted for publication in PR
Radiative Decay of a Long-Lived Particle and Big-Bang Nucleosynthesis
The effects of radiatively decaying, long-lived particles on big-bang
nucleosynthesis (BBN) are discussed. If high-energy photons are emitted after
BBN, they may change the abundances of the light elements through
photodissociation processes, which may result in a significant discrepancy
between the BBN theory and observation. We calculate the abundances of the
light elements, including the effects of photodissociation induced by a
radiatively decaying particle, but neglecting the hadronic branching ratio.
Using these calculated abundances, we derive a constraint on such particles by
comparing our theoretical results with observations. Taking into account the
recent controversies regarding the observations of the light-element
abundances, we derive constraints for various combinations of the measurements.
We also discuss several models which predict such radiatively decaying
particles, and we derive constraints on such models.Comment: Published version in Phys. Rev. D. Typos in figure captions correcte
Networks of blood proteins in the neuroimmunology of schizophrenia.
Levels of certain circulating cytokines and related immune system molecules are consistently altered in schizophrenia and related disorders. In addition to absolute analyte levels, we sought analytes in correlation networks that could be prognostic. We analyzed baseline blood plasma samples with a Luminex platform from 72 subjects meeting criteria for a psychosis clinical high-risk syndrome; 32 subjects converted to a diagnosis of psychotic disorder within two years while 40 other subjects did not. Another comparison group included 35 unaffected subjects. Assays of 141 analytes passed early quality control. We then used an unweighted co-expression network analysis to identify highly correlated modules in each group. Overall, there was a striking loss of network complexity going from unaffected subjects to nonconverters and thence to converters (applying standard, graph-theoretic metrics). Graph differences were largely driven by proteins regulating tissue remodeling (e.g. blood-brain barrier). In more detail, certain sets of antithetical proteins were highly correlated in unaffected subjects (e.g. SERPINE1 vs MMP9), as expected in homeostasis. However, for particular protein pairs this trend was reversed in converters (e.g. SERPINE1 vs TIMP1, being synthetical inhibitors of remodeling of extracellular matrix and vasculature). Thus, some correlation signals strongly predict impending conversion to a psychotic disorder and directly suggest pharmaceutical targets
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton
The PHENIX experiment presents results from the RHIC 2005 run with polarized
proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at
mid-rapidity. Unpolarized cross section results are given for transverse
momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both
lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by
an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double
helicity asymmetries A_LL are presented based on a factor of five improvement
in uncertainties as compared to previously published results, due to both an
improved beam polarization of 50%, and to higher integrated luminosity. These
measurements are sensitive to the gluon polarization in the proton, and exclude
maximal values for the gluon polarization.Comment: 375 authors, 7 pages, 3 figures. Submitted to Phys. Rev. D, Rapid
Communications. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
