347 research outputs found
Effects of large herbivores on grassland arthropod diversity
Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio-temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the specific requirements of arthropods when applying grazing management and to include arthropods in monitoring schemes. Conservation strategies aiming at maximizing heterogeneity, including regulation of herbivore densities (through human interventions or top-down control), maintenance of different types of management in close proximity and rotational grazing regimes, are the most promising options to conserve arthropod diversity
Garden varieties: how attractive are recommended garden plants to butterflies?
One way the public can engage in insect conservation is through wildlife gardening, including the growing of insect-friendly flowers as sources of nectar. However, plant varieties differ in the types of insects they attract. To determine which garden plants attracted which butterflies, we counted butterflies nectaring on 11 varieties of summer-flowering garden plants in a rural garden in East Sussex, UK. These plants were all from a list of 100 varieties considered attractive to British butterflies, and included the five varieties specifically listed by the UK charity Butterfly Conservation as best for summer nectar. A total of 2659 flower visits from 14 butterfly and one moth species were observed. We performed a principal components analysis which showed contrasting patterns between the species attracted to Origanum vulgare and Buddleia davidii. The “butterfly bush” Buddleia attracted many nymphalines, such as the peacock, Inachis io, but very few satyrines such as the gatekeeper, Pyronia tithonus, which mostly visited Origanum. Eupatorium cannibinum had the highest Simpson’s Diversity score of 0.75, while Buddleia and Origanum were lower, scoring 0.66 and 0.50 respectively. No one plant was good at attracting all observed butterfly species, as each attracted only a subset of the butterfly community. We conclude that to create a butterfly-friendly garden, a variety of plant species are required as nectar sources for butterflies. Furthermore, garden plant recommendations can probably benefit from being more precise as to the species of butterfly they attract
Recommended from our members
Similarities in butterfly emergence dates among populations suggest local adaptation to climate
Phenology shifts are the most widely cited examples of the biological impact of climate change, yet there are few assessments of potential effects on the fitness of individual organisms or the persistence of populations. Despite extensive evidence of climate-driven advances in phenological events over recent decades, comparable patterns across species' geographic ranges have seldom been described. Even fewer studies have quantified concurrent spatial gradients and temporal trends between phenology and climate. Here we analyse a large data set (~129 000 phenology measures) over 37 years across the UK to provide the first phylogenetic comparative analysis of the relative roles of plasticity and local adaptation in generating spatial and temporal patterns in butterfly mean flight dates. Although populations of all species exhibit a plastic response to temperature, with adult emergence dates earlier in warmer years by an average of 6.4 days per °C, among-population differences are significantly lower on average, at 4.3 days per °C. Emergence dates of most species are more synchronised over their geographic range than is predicted by their relationship between mean flight date and temperature over time, suggesting local adaptation. Biological traits of species only weakly explained the variation in differences between space-temperature and time-temperature phenological responses, suggesting that multiple mechanisms may operate to maintain local adaptation. As niche models assume constant relationships between occurrence and environmental conditions across a species' entire range, an important implication of the temperature-mediated local adaptation detected here is that populations of insects are much more sensitive to future climate changes than current projections suggest
Creation of micro-topographic features: a new tool for introducing specialist species of calcareous grassland to restored sites?
Questions: What types of pre-sowing disturbance are most suitable to establish specialist forbs of calcareous grassland at previously agriculturally improved restored sites? What impact does management regime have on post-establishment abundance-dynamics?
Location: Pegsdon Hills, Bedfordshire, UK.
Methods: We set up a 4-yr experiment using a split-plot design to combine pre-sowing disturbance treatments at sub-plot level (undisturbed control, glyphosate spraying, harrowing, and creation of ridge-and-furrow features) with three post-establishment management regimes applied at main plot level in years 2–4, involving either summer cutting or summer cattle grazing, and presence or absence of spring sheep grazing, along with autumn cattle grazing in all regimes. After disturbance application, we sowed a seed mixture containing ten specialist species of calcareous grassland. Using quadrat-based methods, we monitored first-year establishment and subsequent dynamics, including reproductive status of species at quadrat level. Initial establishment and subsequent dynamics were analysed separately using LMM.
Results: Initial establishment of sown species was promoted both by harrowing and by ridge-and-furrow creation. While some species were about equally promoted by both, several other species benefited more strongly or exclusively from ridge-and-furrow creation. Effects of disturbance largely persisted in subsequent years, but for some species, different dynamics were observed for harrowed and ridge-and-furrow treatments. Thymus pulegioides and Hippocrepis comosa gradually achieved higher abundances in the ridge-and-furrow treatment, in which notable levels of bare ground persisted for much longer than in the harrowed treatment. In contrast, Filipendula vulgaris and Pimpinella saxifraga achieved higher abundance in the harrowed treatment. Sown species tended to reach reproductive stage faster in the ridge-and-furrow treatment than in the harrowed treatment. By the end of the study, management regimes had resulted in few effects on species dynamics.
Conclusions: Establishment of specialist species of calcareous grassland crucially depended on bare ground creation prior to sowing. Ridge-and-furrow creation resulted in more persistent reduction of competition than the standard practice of harrowing, provided more suitable conditions for low-statured specialist species, and generally enabled faster transition of introduced specialist species to reproductive stage. Our results thus illustrate potential benefits of using more severe disturbance when introducing specialist species of calcareous grassland at restored sites
Recommended from our members
Large extents of intensive land use limit community reorganization during climate warming
Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high-intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully ‘tracking’ climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm- and cold-associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold-associated species, whilst for butterflies, warm-associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting ‘adaptive’ community reorganization in response to climate change. Specifically, high-intensity land use appears to exacerbate declines in cold-adapted bird and butterfly species, and prevent increases in warm-associated birds. This has broad implications for managing landscapes to promote climate change adaptation
Recommended from our members
Species richness declines and biotic homogenization have slowed down for NW-European pollinators and plants
Concern about biodiversity loss has led to increased public investment in conservation. Whereas there is a
widespread perception that such initiatives have been unsuccessful, there are few quantitative tests of this
perception. Here, we evaluate whether rates of biodiversity change have altered in recent decades in three
European countries (Great Britain, Netherlands and Belgium) for plants and flower visiting insects. We
compared four 20-year periods, comparing periods of rapid land-use intensification and natural habitat loss
(1930–1990) with a period of increased conservation investment (post-1990). We found that extensive species
richness loss and biotic homogenisation occurred before 1990, whereas these negative trends became
substantially less accentuated during recent decades, being partially reversed for certain taxa (e.g. bees in
Great Britain and Netherlands). These results highlight the potential to maintain or even restore current
species assemblages (which despite past extinctions are still of great conservation value), at least in regions
where large-scale land-use intensification and natural habitat loss has ceased
Sensitivity of UK butterflies to local climatic extremes: Which life stages are most at risk?
1. There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact it’s often the extent of climate variability that determines a population’s ability to persist at a given site. 2. This study examined the impact of ECEs on the resident UK butterfly species (n=41) over a 37 year period. The study investigated the sensitivity of butterflies to four extremes (Drought, Extreme Precipitation, Extreme Heat, Extreme Cold), identified at the site level, across each species’ life stages. Variations in the vulnerability of butterflies at the site level were also compared based on 3 life history traits (voltinism, habitat requirement, and range). 3. This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life history traits play in species sensitivity to ECEs. 4. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. 5. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study
Large reorganizations in butterfly communities during an extreme weather event
Drought events are projected to increase in frequency and magnitude, which may alter the composition of ecological communities. Using a functional community metric that describes abundance, life history traits and conservation status, based upon Grime’s CSR (Competitive-Stress tolerant-Ruderal)¬ scheme, we investigated how British butterfly communities changed during an extreme drought in 1995. Throughout Britain, the total abundance of these insects had a significant tendency to increase, accompanied by substantial changes in community composition, particularly in more northerly, wetter sites. Communities tended to shift away from specialist, vulnerable species, and towards generalist, widespread species and, in the year following, communities had yet to return to equilibrium. Importantly, heterogeneity in surrounding landscapes mediated community responses to the drought event. Contrary to expectation, however, community shifts were more extreme in areas of greater topographic diversity, whilst land-cover diversity buffered community changes and limited declines in vulnerable specialist butterflies
Recommended from our members
Nest trampling and ground nesting birds: quantifying temporal and spatial overlap between cattle activity and breeding redshank
Conservation grazing for breeding birds needs to balance the positive effects on vegetation structure and negative effects of nest trampling. In the UK, populations of Common redshank Tringa totanus breeding on saltmarshes declined by >50% between 1985 and 2011. These declines have been linked to changes in grazing management. The highest breeding densities of redshank on saltmarshes are found in lightly grazed areas. Conservation initiatives have encouraged low-intensity grazing at <1 cattle/ha, but even these levels of grazing can result in high levels of nest trampling. If livestock distribution is not spatially or temporally homogenous but concentrated where and when redshank breed, rates of nest trampling may be much higher than expected based on livestock density alone. By GPS tracking cattle on saltmarshes and monitoring trampling of dummy nests, this study quantified (i) the spatial and temporal distribution of cattle in relation to the distribution of redshank nesting habitats and (ii) trampling rates of dummy nests. The distribution of livestock was highly variable depending on both time in the season and the saltmarsh under study, with cattle using between 3% and 42% of the saltmarsh extent and spending most their time on higher elevation habitat within 500 m of the sea wall, but moving further onto the saltmarsh as the season progressed. Breeding redshank also nest on these higher elevation zones, and this breeding coincides with the early period of grazing. Probability of nest trampling was correlated to livestock density and was up to six times higher in the areas where redshank breed. This overlap in both space and time of the habitat use of cattle and redshank means that the trampling probability of a nest can be much higher than would be expected based on standard measures of cattle density. Synthesis and applications: Because saltmarsh grazing is required to maintain a favorable vegetation structure for redshank breeding, grazing management should aim to keep livestock away from redshank nesting habitat between mid-April and mid-July when nests are active, through delaying the onset of grazing or introducing a rotational grazing system
Agricultural land-use change and ash (Fraxinus excelsior L.) colonization in Pyrenean landscapes: an interdisciplinary case study
ONLINE FIRSTInternational audienceChanges in agricultural land use are responsible for significant modifications in mountain landscapes. This study is part of an interdisciplinary research on the processes and consequences of spontaneous afforestation of Pyrenean landscapes by ash, and the possibilities for its management. We address the relationships between vegetation dynamics and land-use change from the combination of an agricultural study of change in farm management and an ecological study of grassland colonization by ash. In the framework of a village case study, we characterized parcels management and land-use histories, and analyzed the dynamics of the composition of grassland vegetation communities. From a joint analysis of the results obtained in each discipline, we discuss the limitations and comple-mentarities of the two approaches for the interdisciplinary assessment of the afforestation process
- …
