81 research outputs found

    Muon Spin Relaxation and Susceptibility Studies of Pure and Doped Spin 1/2 Kagom\'{e}-like system (Cux_xZn1x_{1-x})3_{3}V2_{2}O7_7(OH)2_{2} 2H2_2O

    Full text link
    Muon spin relaxation (μ\muSR) and magnetic susceptibility measurements have been performed on the pure and diluted spin 1/2 kagom\'{e} system (Cux_xZn1x_{1-x})3_{3}V2_{2}O7_7(OH)2_{2} 2H2_2O. In the pure x=1x=1 system we found a slowing down of Cu spin fluctuations with decreasing temperature towards T1T \sim 1 K, followed by slow and nearly temperature-independent spin fluctuations persisting down to TT = 50 mK, indicative of quantum fluctuations. No indication of static spin freezing was detected in either of the pure (xx=1.0) or diluted samples. The observed magnitude of fluctuating fields indicates that the slow spin fluctuations represent an intrinsic property of kagom\'e network rather than impurity spins.Comment: 4 pges, 4 color figures, Phys. Rev. Lett. in pres

    Charge degree of freedom and single-spin fluid model in YBa_2Cu_4O_8

    Full text link
    We present a 17O nuclear magnetic resonance study in the stoichiometric superconductor YBa_2Cu_4O_8. A double irradiation method enables us to show that, below around 180 K, the spin-lattice relaxation rate of plane oxygen is not only driven by magnetic, but also significantly by quadrupolar fluctuations, i.e. low-frequency charge fluctuations. In the superconducting state, on lowering the temperature, the quadrupolar relaxation diminishes faster than the magnetic one. These findings show that, with the opening of the pseudo spin gap, a charge degree of freedom of mainly oxygen character is present in the electronic low-energy excitation spectrum.Comment: 4 pages, 3 figures, REVTE

    Impurity-induced spin polarization and NMR line broadening in underdoped cuprates

    Full text link
    We present a theory of magnetic (S=1) Ni and nonmagnetic Zn impurities in underdoped cuprates. Both types of impurities are shown to induce S=1/2 moments on Cu sites in the proximity of the impurity, a process which is intimately related to the spin gap phenomenon in cuprates. Below a characteristic Kondo temperature, the Ni spin is partially screened by the Cu moments, resulting in an effective impurity spin S=1/2. We further analyze the Ruderman-Kittel-Kasiya-Yosida-type response of planar Cu spins to a polarization of the effective impurity moments and derive expressions for the corresponding ^{17}O NMR line broadening. The peculiar aspects of recent experimental NMR data can be traced back to different spatial characteristics of Ni and Zn moments as well as to an inherent temperature dependence of local antiferromagnetic correlations.Comment: PRB B1 01June9

    Evidence for incommensurate spin fluctuations in Sr_2RuO_4

    Full text link
    We report first inelastic neutron scattering measurements in the normal state of Sr_2RuO_4 that reveal the existence of incommensurate magnetic spin fluctuations located at q0=(±0.6π/a,±0.6π/a,0){\bf q}_0=(\pm 0.6\pi/a, \pm 0.6\pi/a, 0). This finding confirms recent band structure calculations that have predicted incommensurate magnetic responses related to dynamical nesting properties of its Fermi surface

    Dzyaloshinsky-Moriya antisymmetric exchange coupling in cuprates: Oxygen effects

    Get PDF
    We revisit a problem of Dzyaloshinsky-Moriya antisymmetric exchange coupling for a single bond in cuprates specifying the local spin-orbital contributions to Dzyaloshinsky vector focusing on the oxygen term. The Dzyaloshinsky vector and respective weak ferromagnetic moment is shown to be a superposition of comparable and, sometimes, competing local Cu and O contributions. The intermediate oxygen 17^{17}O Knight shift is shown to be an effective tool to inspect the effects of Dzyaloshinsky-Moriya coupling in an external magnetic field. We predict the effect of strongstrong oxygen weak antiferromagnetism in edge-shared CuO2_2 chains due to uncompensated oxygen Dzyaloshinsky vectors. Finally, we revisit the effects of symmetric spin anisotropy, in particular, those directly induced by Dzyaloshinsky-Moriya coupling.Comment: 12 pages, 2 figures, submitted to JET

    Crossover from Spin-Density-Wave to Neel-like Ground state

    Full text link
    The characterization and evolution of a Spin Density Wave into the Quantum Neel ground state is considered in the context of a weak coupling theory of the half-filled Hubbard model. Magnetic properties obtained from this weak coupling approach in one dimension compare favorably with exact results from Bethe ansatz (BA). A study of the evolution of several length scales from weak to strong coupling is also presented.Comment: [email protected] Pages: 18 (REVTEX 3.0). 6 postscript figures available upon reques

    Antiferromagnetic phase transition in four-layered high-T_c superconductors Ba_2Ca_3Cu_4O_8(F_yO_{1-y})_2 with T_c=55-102 K: Cu- and F-NMR studies

    Full text link
    We report on magnetic characteristics in four-layered high-T_c superconductors Ba_2Ca_3Cu_4O_8(F_yO_{1-y})_2 with apical fluorine through Cu- and F-NMR measurements. The substitution of oxygen for fluorine at the apical site increases the carrier density (N_h) and T_c from 55 K up to 102 K. The NMR measurements reveal that antiferromagnetic order, which can uniformly coexist with superconductivity, exists up to N_h = 0.15, which is somewhat smaller than N_h = 0.17 being the quantum critical point (QCP) for five-layered compounds. The fact that the QCP for the four-layered compounds moves to a region of lower carrier density than for five-layered ones ensures that the decrease in the number of CuO_2 layers makes an interlayer magnetic coupling weaker.Comment: 7 pages, 6 gigures, Submitted to J. Phys. Soc. Jp

    Ni-substituted sites and the effect on Cu electron spin dynamics of YBa2Cu{3-x}NixO{7-\delta}

    Full text link
    We report Cu nuclear quadrupole resonance experiment on magnetic impurity Ni-substituted YBa2_2Cu3x_{3-x}Nix_xO7δ_{7-\delta}. The distribution of Ni-substituted sites and its effect on the Cu electron spin dynamics are investigated. Two samples with the same Ni concentration xx=0.10 and nearly the same oxygen content but different TcT_c's were prepared: One is an as-synthesized sample (7-δ\delta=6.93) in air (TcT_c80K\approx 80 K), and the other is a quenched one (7-δ\delta=6.92) in a reduced oxygen atmosphere (TcT_c70K\approx 70 K). The plane-site 63^{63}Cu(2) nuclear spin-lattice relaxation for the quenched sample was faster than that for the as-synthesized sample, in contrast to the 63^{63}Cu(1) relaxation that was faster for the as-synthesized sample. This indicates that the density of plane-site Ni(2) is higher in the quenched sample, contrary to the chain-site Ni(1) density which is lower in the quenched sample. From the analysis in terms of the Ni-induced nuclear spin-lattice relaxation, we suggest that the primary origin of suppression of TcT_c is associated with nonmagnetic depairing effect of the plane-site Ni(2).Comment: 7 pages, 5 figure

    High-Tc Superconductivity and Antiferromagnetism in Multilayered Copper Oxides - A New Paradigm of Superconducting Mechanism -

    Full text link
    High-temperature superconductivity (HTSC) in copper oxides emerges on a layered CuO2 plane when an antiferromagnetic Mott insulator is doped with mobile hole carriers. We review extensive studies of multilayered copper oxides by site-selective nuclear magnetic resonance (NMR), which have uncovered the intrinsic phase diagram of antiferromagnetism (AFM) and HTSC for a disorder-free CuO2 plane with hole carriers. We present our experimental findings such as the existence of the AFM metallic state in doped Mott insulators, the uniformly mixed phase of AFM and HTSC, and the emergence of d-wave SC with a maximum Tc just outside a critical carrier density, at which the AFM moment on a CuO2 plane disappears. These results can be accounted for by the Mott physics based on the t-J model. The superexchange interaction J_in among spins plays a vital role as a glue for Cooper pairs or mobile spin-singlet pairs, in contrast to the phonon-mediated attractive interaction among electrons established in the Bardeen-Cooper-Schrieffer (BCS) theory. We remark that the attractive interaction for raising the TcT_c of HTSC up to temperatures as high as 160 K is the large J_in (~0.12 eV), which binds electrons of opposite spins to be on neighboring sites, and that there are no bosonic glues. It is the Coulomb repulsive interaction U(> 6 eV) among Cu-3d electrons that plays a central role in the physics behind high-Tc phenomena. A new paradigm of the SC mechanism opens to strongly correlated electron matter.Comment: 20 pages, 25 figures, Special topics "Recent Developments in Superconductivity" in J. Phys. Soc. Jpn., Published December 26, 201

    Non-Fermi liquid behavior from two-dimensional antiferromagnetic fluctuations: a renormalization-group and large-N analysis

    Full text link
    We analyze the Hertz-Moriya-Millis theory of an antiferromagnetic quantum critical point, in the marginal case of two dimensions (d=2,z=2). Up to next-to-leading order in the number of components (N) of the field, we find that logarithmic corrections do not lead to an enhancement of the Landau damping. This is in agreement with a renormalization-group analysis, for arbitrary N. Hence, the logarithmic effects are unable to account for the behavior reportedly observed in inelastic neutron scattering experiments on CeCu_{6-x}Au_x. We also examine the extended dynamical mean-field treatment (local approximation) of this theory, and find that only subdominant corrections to the Landau damping are obtained within this approximation, in contrast to recent claims.Comment: 15 pages, 8 figure
    corecore