265 research outputs found

    Comparison of 1.0 M gadobutrol and 0.5 M gadopentate dimeglumine-enhanced MRI in 471 patients with known or suspected renal lesions: Results of a multicenter, single-blind, interindividual, randomized clinical phase III trial

    Get PDF
    The purpose of this phase III clinical trial was to compare two different extracellular contrast agents, 1.0 M gadobutrol and 0.5 M gadopentate dimeglumine, for magnetic resonance imaging (MRI) in patients with known or suspected focal renal lesions. Using a multicenter, single-blind, interindividual, randomized study design, both contrast agents were compared in a total of 471 patients regarding their diagnostic accuracy, sensitivity, and specificity to correctly classify focal lesions of the kidney. To test for noninferiority the diagnostic accuracy rates for both contrast agents were compared with CT results based on a blinded reading. The average diagnostic accuracy across the three blinded readers ('average reader') was 83.7% for gadobutrol and 87.3% for gadopentate dimeglumine. The increase in accuracy from precontrast to combined precontrast and postcontrast MRI was 8.0% for gadobutrol and 6.9% for gadopentate dimeglumine. Sensitivity of the average reader was 85.2% for gadobutrol and 88.7% for gadopentate dimeglumine. Specificity of the average reader was 82.1% for gadobutrol and 86.1% for gadopentate dimeglumine. In conclusion, this study documents evidence for the noninferiority of a single i.v. bolus injection of 1.0 M gadobutrol compared with 0.5 M gadopentate dimeglumine in the diagnostic assessment of renal lesions with CE-MRI

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Evidence for models of diagnostic service provision in the community: literature mapping exercise and focused rapid reviews

    Get PDF
    Background Current NHS policy favours the expansion of diagnostic testing services in community and primary care settings. Objectives Our objectives were to identify current models of community diagnostic services in the UK and internationally and to assess the evidence for quality, safety and clinical effectiveness of such services. We were also interested in whether or not there is any evidence to support a broader range of diagnostic tests being provided in the community. Review methods We performed an initial broad literature mapping exercise to assess the quantity and nature of the published research evidence. The results were used to inform selection of three areas for investigation in more detail. We chose to perform focused reviews on logistics of diagnostic modalities in primary care (because the relevant issues differ widely between different types of test); diagnostic ultrasound (a key diagnostic technology affected by developments in equipment); and a diagnostic pathway (assessment of breathlessness) typically delivered wholly or partly in primary care/community settings. Databases and other sources searched, and search dates, were decided individually for each review. Quantitative and qualitative systematic reviews and primary studies of any design were eligible for inclusion. Results We identified seven main models of service that are delivered in primary care/community settings and in most cases with the possible involvement of community/primary care staff. Not all of these models are relevant to all types of diagnostic test. Overall, the evidence base for community- and primary care-based diagnostic services was limited, with very few controlled studies comparing different models of service. We found evidence from different settings that these services can reduce referrals to secondary care and allow more patients to be managed in primary care, but the quality of the research was generally poor. Evidence on the quality (including diagnostic accuracy and appropriateness of test ordering) and safety of such services was mixed. Conclusions In the absence of clear evidence of superior clinical effectiveness and cost-effectiveness, the expansion of community-based services appears to be driven by other factors. These include policies to encourage moving services out of hospitals; the promise of reduced waiting times for diagnosis; the availability of a wider range of suitable tests and/or cheaper, more user-friendly equipment; and the ability of commercial providers to bid for NHS contracts. However, service development also faces a number of barriers, including issues related to staffing, training, governance and quality control. Limitations We have not attempted to cover all types of diagnostic technology in equal depth. Time and staff resources constrained our ability to carry out review processes in duplicate. Research in this field is limited by the difficulty of obtaining, from publicly available sources, up-to-date information about what models of service are commissioned, where and from which providers. Future work There is a need for research to compare the outcomes of different service models using robust study designs. Comparisons of ‘true’ community-based services with secondary care-based open-access services and rapid access clinics would be particularly valuable. There are specific needs for economic evaluations and for studies that incorporate effects on the wider health system. There appears to be no easy way of identifying what services are being commissioned from whom and keeping up with local evaluations of new services, suggesting a need to improve the availability of information in this area. Funding The National Institute for Health Research Health Services and Delivery Research programme

    Biomarkers in T cell therapy clinical trials

    Get PDF
    T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity

    The benefit of directly comparing autism and schizophrenia for revealing mechanisms of social cognitive impairment

    Get PDF
    Autism and schizophrenia share a history of diagnostic conflation that was not definitively resolved until the publication of the DSM-III in 1980. Though now recognized as heterogeneous disorders with distinct developmental trajectories and dissociative features, much of the early nosological confusion stemmed from apparent overlap in certain areas of social dysfunction. In more recent years, separate but substantial literatures have accumulated for autism and schizophrenia demonstrating that abnormalities in social cognition directly contribute to the characteristic social deficits of both disorders. The current paper argues that direct comparison of social cognitive impairment can highlight shared and divergent mechanisms underlying pathways to social dysfunction, a process that can provide significant clinical benefit by informing the development of tailored treatment efforts. Thus, while the history of diagnostic conflation between autism and schizophrenia may have originated in similarities in social dysfunction, the goal of direct comparisons is not to conflate them once again but rather to reveal distinctions that illuminate disorder-specific mechanisms and pathways that contribute to social cognitive impairment

    Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor

    Full text link
    Abstract More and more targeted agents become available for B cell malignancies with increasing precision and potency. The first-in-class Bruton’s tyrosine kinase (BTK) inhibitor, ibrutinib, has been in clinical use for the treatment of chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom’s macroglobulinemia. More selective BTK inhibitors (ACP-196, ONO/GS-4059, BGB-3111, CC-292) are being explored. Acalabrutinib (ACP-196) is a novel irreversible second-generation BTK inhibitor that was shown to be more potent and selective than ibrutinib. This review summarized the preclinical research and clinical data of acalabrutinib

    The Generation R Study: design and cohort update 2010

    Get PDF
    The Generation R Study is a population-based prospective cohort study from fetal life until young adulthood. The study is designed to identify early environmental and genetic causes of normal and abnormal growth, development and health during fetal life, childhood and adulthood. The study focuses on four primary areas of research: (1) growth and physical development; (2) behavioural and cognitive development; (3) diseases in childhood; and (4) health and healthcare for pregnant women and children. In total, 9,778 mothers with a delivery date from April 2002 until January 2006 were enrolled in the study. General follow-up rates until the age of 4 years exceed 75%. Data collection in mothers, fathers and preschool children included questionnaires, detailed physical and ultrasound examinations, behavioural observations, and biological samples. A genome wide association screen is available in the participating children. Regular detailed hands on assessment are performed from the age of 5 years onwards. Eventually, results forthcoming from the Generation R Study have to contribute to the development of strategies for optimizing health and healthcare for pregnant women and children

    The Rotterdam Study: 2012 objectives and design update

    Get PDF
    The Rotterdam Study is a prospective cohort study ongoing since 1990 in the city of Rotterdam in The Netherlands. The study targets cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, oncological, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. The findings of the Rotterdam Study have been presented in over a 1,000 research articles and reports (see www.erasmus-epidemiology.nl/rotterdamstudy). This article gives the rationale of the study and its design. It also presents a summary of the major findings and an update of the objectives and methods

    Search for Higgs Boson Pair Production in the Four b Quark Final State in Proton-Proton Collisions at root s=13 TeV

    Get PDF

    Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at root s=13TeV

    Get PDF
    A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb(-1). The signal is characterized by a large missing transverse momentum recoiling against a bottom quark-antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+a) and on parameters of a baryonic Z simplified model. The 2HDM+a model is tested experimentally for the first time. For the baryonic Z model, the presented results constitute the most stringent constraints to date.Peer reviewe
    corecore