200 research outputs found

    Rectilinear Planarity of Partial 2-Trees

    Full text link
    A graph is rectilinear planar if it admits a planar orthogonal drawing without bends. While testing rectilinear planarity is NP-hard in general (Garg and Tamassia, 2001), it is a long-standing open problem to establish a tight upper bound on its complexity for partial 2-trees, i.e., graphs whose biconnected components are series-parallel. We describe a new O(n^2)-time algorithm to test rectilinear planarity of partial 2-trees, which improves over the current best bound of O(n^3 \log n) (Di Giacomo et al., 2022). Moreover, for partial 2-trees where no two parallel-components in a biconnected component share a pole, we are able to achieve optimal O(n)-time complexity. Our algorithms are based on an extensive study and a deeper understanding of the notion of orthogonal spirality, introduced several years ago (Di Battista et al, 1998) to describe how much an orthogonal drawing of a subgraph is rolled-up in an orthogonal drawing of the graph.Comment: arXiv admin note: substantial text overlap with arXiv:2110.00548 Appears in the Proceedings of the 30th International Symposium on Graph Drawing and Network Visualization (GD 2022

    On the Parameterized Complexity of Bend-Minimum Orthogonal Planarity

    Full text link
    Computing planar orthogonal drawings with the minimum number of bends is one of the most relevant topics in Graph Drawing. The problem is known to be NP-hard, even when we want to test the existence of a rectilinear planar drawing, i.e., an orthogonal drawing without bends (Garg and Tamassia, 2001). From the parameterized complexity perspective, the problem is fixed-parameter tractable when parameterized by the sum of three parameters: the number of bends, the number of vertices of degree at most two, and the treewidth of the input graph (Di Giacomo et al., 2022). We improve this last result by showing that the problem remains fixed-parameter tractable when parameterized only by the number of vertices of degree at most two plus the number of bends. As a consequence, rectilinear planarity testing lies in \FPT~parameterized by the number of vertices of degree at most two.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023
    corecore