200 research outputs found
Rectilinear Planarity of Partial 2-Trees
A graph is rectilinear planar if it admits a planar orthogonal drawing
without bends. While testing rectilinear planarity is NP-hard in general (Garg
and Tamassia, 2001), it is a long-standing open problem to establish a tight
upper bound on its complexity for partial 2-trees, i.e., graphs whose
biconnected components are series-parallel. We describe a new O(n^2)-time
algorithm to test rectilinear planarity of partial 2-trees, which improves over
the current best bound of O(n^3 \log n) (Di Giacomo et al., 2022). Moreover,
for partial 2-trees where no two parallel-components in a biconnected component
share a pole, we are able to achieve optimal O(n)-time complexity. Our
algorithms are based on an extensive study and a deeper understanding of the
notion of orthogonal spirality, introduced several years ago (Di Battista et
al, 1998) to describe how much an orthogonal drawing of a subgraph is rolled-up
in an orthogonal drawing of the graph.Comment: arXiv admin note: substantial text overlap with arXiv:2110.00548
Appears in the Proceedings of the 30th International Symposium on Graph
Drawing and Network Visualization (GD 2022
On the Parameterized Complexity of Bend-Minimum Orthogonal Planarity
Computing planar orthogonal drawings with the minimum number of bends is one
of the most relevant topics in Graph Drawing. The problem is known to be
NP-hard, even when we want to test the existence of a rectilinear planar
drawing, i.e., an orthogonal drawing without bends (Garg and Tamassia, 2001).
From the parameterized complexity perspective, the problem is fixed-parameter
tractable when parameterized by the sum of three parameters: the number of
bends, the number of vertices of degree at most two, and the treewidth of the
input graph (Di Giacomo et al., 2022). We improve this last result by showing
that the problem remains fixed-parameter tractable when parameterized only by
the number of vertices of degree at most two plus the number of bends. As a
consequence, rectilinear planarity testing lies in \FPT~parameterized by the
number of vertices of degree at most two.Comment: Appears in the Proceedings of the 31st International Symposium on
Graph Drawing and Network Visualization (GD 2023
- …
