41 research outputs found
Tat-human immunodeficiency virus-1 induces human monocyte chemotaxis by activation of vascular endothelial growth factor receptor-1.
Human immunodeficiency virus-1 (HIV-1) Tat protein can be released by infected cells and activates mesenchymal cells. Among these, monocytes respond to Tat by migrating into tissues and releasing inflammatory mediators. In the present study, we have examined the molecular mechanism of monocyte activation by Tat, showing that this viral protein signals inside the cells through the tyrosine kinase receptor for vascular endothelial growth factor encoded by fms-like tyrosine kinase gene (VEGFR-1/Flt-1). Subnanomolar concentrations of Tat induced monocyte chemotaxis, which was inhibited by cell preincubation with vascular-endothelial growth factor-A (VEGF-A). This desensitisation was specific for VEGF-A, because it not was observed with FMLP. In addition, the soluble form of VEGFR-1 specifically inhibited polarization and migration induced by Tat and VEGF-A, thus confirming the common use of this receptor. Binding studies performed at equilibrium by using radiolabeled Tat showed that monocytes expressed a unique class of binding site, with a kd of approximately 0.2 nmol/L. The binding of radiolabeled Tat to monocyte surface and the cross-linking to a protein of 150 kD was inhibited specifically by an excess of cold Tat or VEGF-A. Western blot analysis with an antibody anti-VEGFR-1/Flt-1 performed on monocyte phosphoproteins immunoprecipitated by an monoclonal antibody anti-phosphotyrosine showed that Tat induced a rapid phosphorylation in tyrosine residue of the 150-kD VEGFR-1/Flt-1. Taken together, these results suggest that biologic activities of HIV-1 Tat in human monocytes may, at least in part, be elicited by activation of VEGFR-1/Flt-1
Bacterial Lipopolysaccharide Rapidly Inhibits Expression of C–C Chemokine Receptors in Human Monocytes
The present study was designed to investigate the effect of bacterial lipopolysaccharide (LPS) on C–C chemokine receptors (CCR) expressed in human mononuclear phagocytes. LPS caused a rapid and drastic reduction of CCR2 mRNA levels, which binds MCP-1 and -3. CCR1 and CCR5 mRNAs were also reduced, though to a lesser extent, whereas CXCR2 was unaffected. The rate of nuclear transcription of CCR2 was not affected by LPS, whereas the mRNA half life was reduced from 1.5 h to 45 min. As expected, LPS-induced inhibition of CCR2 mRNA expression was associated with a reduction of both MCP-1 binding and chemotactic responsiveness. The capacity to inhibit CCR2 expression in monocytes was shared by other microbial agents and cytokines (inactivated Streptococci, Propionibacterium acnes, and to a lesser extent, IL-1 and TNF-α). In contrast, IL-2 augmented CCR2 expression and MCP-1 itself had no effect. These results suggest that, regulation of receptor expression in addition to agonist production is likely a crucial point in the regulation of the chemokine system
