14,392 research outputs found

    Introducing the Spatial Conflict Dynamics indicator of political violence

    Full text link
    Modern armed conflicts have a tendency to cluster together and spread geographically. However, the geography of most conflicts remains under-studied. To fill this gap, this article presents a new indicator that measures two key geographical properties of subnational political violence: the conflict intensity within a region on the one hand, and the spatial distribution of conflict within a region on the other. We demonstrate the indicator in North and West Africa between 1997 to 2019 to show that it can clarify how conflicts can spread from place to place and how the geography of conflict changes over time

    Quantum bit detector

    Full text link
    We propose and analyze an experimental scheme of quantum nondemolition detection of monophotonic and vacuum states in a superconductive toroidal cavity by means of Rydberg atoms.Comment: 4 pages, 3 figure

    Ensemble versus individual system in quantum optics

    Get PDF
    Modern techniques allow experiments on a single atom or system, with new phenomena and new challenges for the theoretician. We discuss what quantum mechanics has to say about a single system. The quantum jump approach as well as the role of quantum trajectories are outlined and a rather sophisticated example is given.Comment: Fundamental problems in quantum theory workshop, invited lecture. 11 pages Latex + 7 figures. To appear in Fortschr. d. Physi

    Earliest Ascents of Mauna Loa Volcano, Hawai'i

    Get PDF

    Experimental realization of Dicke states of up to six qubits for multiparty quantum networking

    Get PDF
    We report the first experimental generation and characterization of a six-photon Dicke state. The produced state shows a fidelity of F=0.56+/-0.02 with respect to an ideal Dicke state and violates a witness detecting genuine six-qubit entanglement by four standard deviations. We confirm characteristic Dicke properties of our resource and demonstrate its versatility by projecting out four- and five-photon Dicke states, as well as four-photon GHZ and W states. We also show that Dicke states have interesting applications in multiparty quantum networking protocols such as open-destination teleportation, telecloning and quantum secret sharing.Comment: 4 pages, 4 figures, RevTeX

    Calibration of thickness-dependent k-factors for germanium X-ray lines to improve energy-dispersive X-ray spectroscopy of SiGe layers in analytical transmission electron microscopy

    Get PDF
    We show that the accuracy of energy-dispersive X-ray spectroscopy can be improved by analysing and comparing multiple lines from the same element. For each line, an effective k-factor can be defined that varies as a function of the intensity ratio of multiple lines (e.g. K/L) from the same element. This basically performs an internal self-consistency check in the quantification using differently absorbed X-ray lines, which is in principle equivalent to an absorption correction as a function of specimen thickness but has the practical advantage that the specimen thickness itself does not actually need to be measured

    Formation of Low Threshold Voltage Microlasers

    Get PDF
    Vertical cavity surface emitting lasers (VCSELs) with threshold voltages of 1.7V have been fabricated. The resistance-area product in these new vertical cavity lasers is comparable to that of edge-emitting lasers, and threshold currents as low as 3 mA have been measured. Molecular beam epitaxy was used to grow n-type mirrors, a quantum well active region, and a heavily Be-doped p-contact. After contact definition and alloying, passive high-reflectivity mirrors were deposited by reactive sputter deposition of SiO2/Si3N4 to complete the laser cavity

    Nanosecond Dynamics of Single-Molecule Fluorescence Resonance Energy Transfer

    Full text link
    Motivated by recent experiments on photon statistics from individual dye pairs planted on biomolecules and coupled by fluorescence resonance energy transfer (FRET), we show here that the FRET dynamics can be modelled by Gaussian random processes with colored noise. Using Monte-Carlo numerical simulations, the photon intensity correlations from the FRET pairs are calculated, and are turned out to be very close to those observed in experiment. The proposed stochastic description of FRET is consistent with existing theories for microscopic dynamics of the biomolecule that carries the FRET coupled dye pairs.Comment: 8 pages, 1 figure. accepted to J.Phys.Chem.

    A New Measurement of the Temperature Density Relation of the IGM From Voigt Profile Fitting

    Full text link
    We decompose the Lyman-{\alpha} (Ly{\alpha}) forest of an extensive sample of 74 high signal-to-noise ratio and high-resolution quasar spectra into a collection of Voigt profiles. Absorbers located near caustics in the peculiar velocity field have the smallest Doppler parameters, resulting in a low-bb cutoff in the bb-NHIN_{\text{HI}} set by the thermal state of intergalactic medium (IGM). We fit this cutoff as a function of redshift over the range 2.0z3.42.0\leq z \leq 3.4, which allows us to measure the evolution of the IGM temperature-density (T=T0(ρ/ρ0)γ1T= T_0 (\rho/ \rho_0)^{\gamma-1}) relation parameters T0T_0 and γ\gamma. We calibrate our measurements against Lyα\alpha forest simulations, using 21 different thermal models of the IGM at each redshift, also allowing for different values of the IGM pressure smoothing scale. We adopt a forward-modeling approach and self-consistently apply the same algorithms to both data and simulations, propagating both statistical and modeling uncertainties via Monte Carlo. The redshift evolution of T0T_0 shows a suggestive peak at z=2.8z=2.8, while our evolution of γ\gamma is consistent with γ1.4\gamma\simeq 1.4 and disfavors inverted temperature-density relations. Our measured evolution of T0T_0 and γ\gamma are generally in good agreement with previous determinations in the literature. Both the peak in the evolution of T0T_0 at z=2.8z = 2.8, as well as the high temperatures T01500020000T_0\simeq 15000-20000\,K that we observe at 2.4<z<3.42.4 < z < 3.4, strongly suggest that a significant episode of heating occurred after the end of HI reionization, which was most likely the cosmic reionization of HeII.Comment: Accepted for publication in ApJ, 23 pages, 26 figures, machine readable tables available onlin
    corecore