14,392 research outputs found
Introducing the Spatial Conflict Dynamics indicator of political violence
Modern armed conflicts have a tendency to cluster together and spread
geographically. However, the geography of most conflicts remains under-studied.
To fill this gap, this article presents a new indicator that measures two key
geographical properties of subnational political violence: the conflict
intensity within a region on the one hand, and the spatial distribution of
conflict within a region on the other. We demonstrate the indicator in North
and West Africa between 1997 to 2019 to show that it can clarify how conflicts
can spread from place to place and how the geography of conflict changes over
time
Quantum bit detector
We propose and analyze an experimental scheme of quantum nondemolition
detection of monophotonic and vacuum states in a superconductive toroidal
cavity by means of Rydberg atoms.Comment: 4 pages, 3 figure
Ensemble versus individual system in quantum optics
Modern techniques allow experiments on a single atom or system, with new
phenomena and new challenges for the theoretician. We discuss what quantum
mechanics has to say about a single system. The quantum jump approach as well
as the role of quantum trajectories are outlined and a rather sophisticated
example is given.Comment: Fundamental problems in quantum theory workshop, invited lecture. 11
pages Latex + 7 figures. To appear in Fortschr. d. Physi
Experimental realization of Dicke states of up to six qubits for multiparty quantum networking
We report the first experimental generation and characterization of a
six-photon Dicke state. The produced state shows a fidelity of F=0.56+/-0.02
with respect to an ideal Dicke state and violates a witness detecting genuine
six-qubit entanglement by four standard deviations. We confirm characteristic
Dicke properties of our resource and demonstrate its versatility by projecting
out four- and five-photon Dicke states, as well as four-photon GHZ and W
states. We also show that Dicke states have interesting applications in
multiparty quantum networking protocols such as open-destination teleportation,
telecloning and quantum secret sharing.Comment: 4 pages, 4 figures, RevTeX
Calibration of thickness-dependent k-factors for germanium X-ray lines to improve energy-dispersive X-ray spectroscopy of SiGe layers in analytical transmission electron microscopy
We show that the accuracy of energy-dispersive X-ray spectroscopy can be improved by analysing and comparing multiple lines from the same element. For each line, an effective k-factor can be defined that varies as a function of the intensity ratio of multiple lines (e.g. K/L) from the same element. This basically performs an internal self-consistency check in the quantification using differently absorbed X-ray lines, which is in principle equivalent to an absorption correction as a function of specimen thickness but has the practical advantage that the specimen thickness itself does not actually need to be measured
Formation of Low Threshold Voltage Microlasers
Vertical cavity surface emitting lasers (VCSELs) with threshold voltages of 1.7V have been fabricated. The resistance-area product in these new vertical cavity lasers is comparable to that of edge-emitting lasers, and threshold currents as low as 3 mA have been measured. Molecular beam epitaxy was used to grow n-type mirrors, a quantum well active region, and a heavily Be-doped p-contact. After contact definition and alloying, passive high-reflectivity mirrors were deposited by reactive sputter deposition of SiO2/Si3N4 to complete the laser cavity
Nanosecond Dynamics of Single-Molecule Fluorescence Resonance Energy Transfer
Motivated by recent experiments on photon statistics from individual dye
pairs planted on biomolecules and coupled by fluorescence resonance energy
transfer (FRET), we show here that the FRET dynamics can be modelled by
Gaussian random processes with colored noise. Using Monte-Carlo numerical
simulations, the photon intensity correlations from the FRET pairs are
calculated, and are turned out to be very close to those observed in
experiment. The proposed stochastic description of FRET is consistent with
existing theories for microscopic dynamics of the biomolecule that carries the
FRET coupled dye pairs.Comment: 8 pages, 1 figure. accepted to J.Phys.Chem.
A New Measurement of the Temperature Density Relation of the IGM From Voigt Profile Fitting
We decompose the Lyman-{\alpha} (Ly{\alpha}) forest of an extensive sample of
74 high signal-to-noise ratio and high-resolution quasar spectra into a
collection of Voigt profiles. Absorbers located near caustics in the peculiar
velocity field have the smallest Doppler parameters, resulting in a low-
cutoff in the - set by the thermal state of intergalactic
medium (IGM). We fit this cutoff as a function of redshift over the range
, which allows us to measure the evolution of the IGM
temperature-density () relation parameters
and . We calibrate our measurements against Ly forest
simulations, using 21 different thermal models of the IGM at each redshift,
also allowing for different values of the IGM pressure smoothing scale. We
adopt a forward-modeling approach and self-consistently apply the same
algorithms to both data and simulations, propagating both statistical and
modeling uncertainties via Monte Carlo. The redshift evolution of shows a
suggestive peak at , while our evolution of is consistent with
and disfavors inverted temperature-density relations. Our
measured evolution of and are generally in good agreement with
previous determinations in the literature. Both the peak in the evolution of
at , as well as the high temperatures K
that we observe at , strongly suggest that a significant episode
of heating occurred after the end of HI reionization, which was most likely the
cosmic reionization of HeII.Comment: Accepted for publication in ApJ, 23 pages, 26 figures, machine
readable tables available onlin
- …
