5,576 research outputs found
Triple resonant four-wavemixing boosts the yield of continuous coherent VUV generation
Continuous-wave coherent radiation in the vacuum ultraviolet (VUV)wavelength
region at 121 nm will be essential for future laser-cooling of trapped
antihydrogen [1]. Cold antihydrogen will enable both tests of the fundamental
symmetry between matter and antimatter at unprecedented experimental precision
[2] and also experiments in antimatter gravity [3]. Another fascinating
application of narrowband continuous laser radiation in the VUV is quantum
information processing using single trapped ions in Rydberg-states [4, 5]. Here
we describe highly efficient continuous four-wave mixing in the VUV by using
three different fundamental wavelengths with a sophisticated choice of
detunings to resonances of the nonlinear medium. Up to 6 microwatts of vacuum
ultraviolet radiation at 121 nm can be generated which corresponds to an
increase of three orders of magnitude in efficiency.Comment: 11 pages, 3 figure
Precision Measurements of Higgs Couplings: Implications for New Physics Scales
The measured properties of the recently discovered Higgs boson are in good
agreement with predictions from the Standard Model. However, small deviations
in the Higgs couplings may manifest themselves once the currently large
uncertainties will be improved as part of the LHC program and at a future Higgs
factory. We review typical new physics scenarios that lead to observable
modifications of the Higgs interactions. They can be divided into two broad
categories: mixing effects as in portal models or extended Higgs sectors, and
vertex loop effects from new matter or gauge fields. In each model we relate
coupling deviations to their effective new physics scale. It turns out that
with percent level precision the Higgs couplings will be sensitive to the
multi-TeV regime.Comment: Invited review for Journal of Physics G, 33pp; v2: references added
and improved discussion of operator basis in section 2.
Observation of Spin Flips with a Single Trapped Proton
Radio-frequency induced spin transitions of one individual proton are
observed for the first time. The spin quantum jumps are detected via the
continuous Stern-Gerlach effect, which is used in an experiment with a single
proton stored in a cryogenic Penning trap. This is an important milestone
towards a direct high-precision measurement of the magnetic moment of the
proton and a new test of the matter-antimatter symmetry in the baryon sector
Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen
Cooling antihydrogen atoms is important for future experiments both to test
the fundamental CPT symmetry by high-resolution laser spectroscopy and also to
measure the gravitational acceleration of antimatter. Laser-cooling of
antihydrogen can be done on the strong 1S-2P transition at the wavelength of
Lyman-alpha (121.6nm). A continuous-wave laser at the Lyman-alpha wavelength
based on solid-state fundamental lasers is described. By using a two-photon and
a near one photon resonance a scan across the whole phasematching curve of the
four-wave mixing process is possible. Furthermore the influence of the beam
profile of one fundamental beam on the four-wave mixing process is studied.Comment: 4 pages, 4 figure
Laser cooling of new atomic and molecular species with ultrafast pulses
We propose a new laser cooling method for atomic species whose level
structure makes traditional laser cooling difficult. For instance, laser
cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while
multielectron atoms need single-frequency light at many widely separated
frequencies. These restrictions can be eased by laser cooling on two-photon
transitions with ultrafast pulse trains. Laser cooling of hydrogen,
antihydrogen, and many other species appears feasible, and extension of the
technique to molecules may be possible.Comment: revision of quant-ph/0306099, submitted to PR
Clinical relevance of circulating tumour cells in the bone marrow of patients with SCCHN
Background: Clinical outcome of patients with head and neck squamous cell carcinoma (SCCHN) depends on several risk factors like the presence of locoregional lymph node or distant metastases, stage, localisation and histologic differentiation of the tumour. Circulating tumour cells in the bone marrow indicate a poor prognosis for patients with various kinds of malignoma. The present study examines the clinical relevance of occult tumour cells in patients suffering from SCCHN. Patients and Methods: Bone marrow aspirates of 176 patients suffering from SCCHN were obtained prior to surgery and stained for the presence of disseminated tumour cells. Antibodies for cytokeratin 19 were used for immunohistochemical detection with APAAP on cytospin slides. Within a clinical follow-up protocol over a period of 60 months, the prognostic relevance of several clinicopathological parameters and occult tumour cells was evaluated. Results: Single CK19-expressing tumour cells could be detected in the bone marrow of 30.7% of the patients. There is a significant correlation between occult tumour cells in the bone marrow and relapse. Uni- and multivariate analysis of all clinical data showed the metastases in the locoregional lymph system and detection of disseminated tumour cells in the bone marrow to be statistically highly significant for clinical prognosis. Conclusion: The detection of minimal residual disease underlines the understanding of SCCHN as a systemic disease. Further examination of such cells will lead to a better understanding of the tumour biology, as well as to improvement of diagnostic and therapeutic strategies
Emulating 802.11B And I/O Automata
The distributed systems solution to the World Wide Web is defined not only by the improvement of telephony, but also by the key need for replication. In our research, we validate the emulation of redundancy, which embodies the confusing principles of electrical engineering. In this paper we probe how 802.11b can be applied to the development of replication
E2 strengths and transition radii difference of one-phonon 2+ states of 92Zr from electron scattering at low momentum transfer
Background: Mixed-symmetry 2+ states in vibrational nuclei are characterized
by a sign change between dominant proton and neutron valence-shell components
with respect to the fully symmetric 2+ state. The sign can be measured by a
decomposition of proton and neutron transition radii with a combination of
inelastic electron and hadron scattering [C. Walz et al., Phys. Rev. Lett. 106,
062501 (2011)]. For the case of 92Zr, a difference could be experimentally
established for the neutron components, while about equal proton transition
radii were indicated by the data. Method: Differential cross sections for the
excitation of one-phonon 2+ and 3- states in 92Zr have been measured with the
(e,e') reaction at the S-DALINAC in a momentum transfer range q = 0.3-0.6
fm^(-1). Results: Transition strengths B(E2;2+_1 -> 0+_1) = 6.18(23), B(E2;
2+_2 -> 0+_1) = 3.31(10) and B(E3; 3-_1 -> 0+_1) = 18.4(11) Weisskopf units are
determined from a comparison of the experimental cross sections to
quasiparticle-phonon model (QPM) calculations. It is shown that a
model-independent plane wave Born approximation (PWBA) analysis can fix the
ratio of B(E2) transition strengths to the 2+_(1,2) states with a precision of
about 1%. The method furthermore allows to extract their proton transition
radii difference. With the present data -0.12(51) fm is obtained. Conclusions:
Electron scattering at low momentum transfers can provide information on
transition radii differences of one-phonon 2+ states even in heavy nuclei.
Proton transition radii for the 2+_(1,2) states in 92Zr are found to be
identical within uncertainties. The g.s. transition probability for the
mixed-symmetry state can be determined with high precision limited only by the
available experimental information on the B(E2; 2+_1 -> 0+_1) value.Comment: 14 pages, 5 figures, submitted to Phys. Rev. C, revised manuscrip
Stress condensation in crushed elastic manifolds
We discuss an M-dimensional phantom elastic manifold of linear size L crushed
into a small sphere of radius R << L in N-dimensional space. We investigate the
low elastic energy states of 2-sheets (M=2) and 3-sheets (M=3) using analytic
methods and lattice simulations. When N \geq 2M the curvature energy is
uniformly distributed in the sheet and the strain energy is negligible. But
when N=M+1 and M>1, both energies appear to be condensed into a network of
narrow M-1 dimensional ridges. The ridges appear straight over distances
comparable to the confining radius R.Comment: 4 pages, RevTeX + epsf, 4 figures, Submitted to Phys. Rev. Let
Towards a high-precision measurement of the antiproton magnetic moment
The recent observation of single spins flips with a single proton in a
Penning trap opens the way to measure the proton magnetic moment with high
precision. Based on this success, which has been achieved with our apparatus at
the University of Mainz, we demonstrated recently the first application of the
so called double Penning-trap method with a single proton. This is a major step
towards a measurement of the proton magnetic moment with ppb precision. To
apply this method to a single trapped antiproton our collaboration is currently
setting up a companion experiment at the antiproton decelerator of CERN. This
effort is recognized as the Baryon Antibaryon Symmetry Experiment (BASE). A
comparison of both magnetic moment values will provide a stringent test of CPT
invariance with baryons.Comment: Submitted to LEAP 2013 conference proceeding
- …
