1,148 research outputs found
Hydroclimate variability from western Iberia (Portugal) during the Holocene: insights from a composite stalagmite isotope record
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Thatcher, D. L., Wanamaker, A. D., Denniston, R. F., Asmerom, Y., Polyak, V. J., Fullick, D., Ummenhofer, C. C., Gillikin, D. P., & Haws, J. A. Hydroclimate variability from western Iberia (Portugal) during the Holocene: insights from a composite stalagmite isotope record. Holocene, (2020): 095968362090864, doi:10.1177/0959683620908648.Iberia is predicted under future warming scenarios to be increasingly impacted by drought. While it is known that this region has experienced multiple intervals of enhanced aridity over the Holocene, additional hydroclimate-sensitive records from Iberia are necessary to place current and future drying into a broader perspective. Toward that end, we present a multi-proxy composite record from six well-dated and overlapping speleothems from Buraca Gloriosa (BG) cave, located in western Portugal. The coherence between the six stalagmites in this composite stalagmite record illustrates that climate (not in-cave processes) impacts speleothem isotopic values. This record provides the first high-resolution, precisely dated, terrestrial record of Holocene hydroclimate from west-central Iberia. The BG record reveals that aridity in western Portugal increased secularly from 9.0 ka BP to present, as evidenced by rising values of both carbon (δ13C) and oxygen (δ18O) stable isotope values. This trend tracks the decrease in Northern Hemisphere summer insolation and parallels Iberian margin sea surface temperatures (SST). The increased aridity over the Holocene is consistent with changes in Hadley Circulation and a southward migration of the Intertropical Convergence Zone (ITCZ). Centennial-scale shifts in hydroclimate are coincident with changes in total solar irradiance (TSI) after 4 ka BP. Several major drying events are evident, the most prominent of which was centered around 4.2 ka BP, a feature also noted in other Iberian climate records and coinciding with well-documented regional cultural shifts. Substantially, wetter conditions occurred from 0.8 ka BP to 0.15 ka BP, including much of the ‘Little Ice Age’. This was followed by increasing aridity toward present day. This composite stalagmite proxy record complements oceanic records from coastal Iberia, lacustrine records from inland Iberia, and speleothem records from both northern and southern Spain and depicts the spatial and temporal variability in hydroclimate in Iberia.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported, in part, by the US National Science Foundation (Grants: #1804528 to ADW; #1804635 to RD; #1804132 to CCU; #1806025 to YA and VP; #1805163 to DPG; BCS-0455145, BCS-0612923, and BCS-1118155 to JAH)
CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers.
BackgroundThe problem of supervised DNA sequence classification arises in several fields of computational molecular biology. Although this problem has been extensively studied, it is still computationally challenging due to size of the datasets that modern sequencing technologies can produce.ResultsWe introduce CLARK a novel approach to classify metagenomic reads at the species or genus level with high accuracy and high speed. Extensive experimental results on various metagenomic samples show that the classification accuracy of CLARK is better or comparable to the best state-of-the-art tools and it is significantly faster than any of its competitors. In its fastest single-threaded mode CLARK classifies, with high accuracy, about 32 million metagenomic short reads per minute. CLARK can also classify BAC clones or transcripts to chromosome arms and centromeric regions.ConclusionsCLARK is a versatile, fast and accurate sequence classification method, especially useful for metagenomics and genomics applications. It is freely available at http://clark.cs.ucr.edu/
Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in cowpea [Vigna unguiculata (L.) Walp].
BackgroundHeat-induced browning (Hbs) of seed coats is caused by high temperatures which discolors the seed coats of many legumes, affecting the visual appearance and quality of seeds. The genetic determinants underlying Hbs in cowpea are unknown.ResultsWe identified three QTL associated with the heat-induced browning of seed coats trait, Hbs-1, Hbs-2 and Hbs-3, using cowpea RIL populations IT93K-503-1 (Hbs positive) x CB46 (hbs negative) and IT84S-2246 (Hbs positive) x TVu14676 (hbs negative). Hbs-1 was identified in both populations, accounting for 28.3% -77.3% of the phenotypic variation. SNP markers 1_0032 and 1_1128 co-segregated with the trait. Within the syntenic regions of Hbs-1 in soybean, Medicago and common bean, several ethylene forming enzymes, ethylene responsive element binding factors and an ACC oxidase 2 were observed. Hbs-1 was identified in a BAC clone in contig 217 of the cowpea physical map, where ethylene forming enzymes were present. Hbs-2 was identified in the IT93K-503-1 x CB46 population and accounted for of 9.5 to 12.3% of the phenotypic variance. Hbs-3 was identified in the IT84S-2246 x TVu14676 population and accounted for 6.2 to 6.8% of the phenotypic variance. SNP marker 1_0640 co-segregated with the heat-induced browning phenotype. Hbs-3 was positioned on BAC clones in contig512 of the cowpea physical map, where several ACC synthase 1 genes were present.ConclusionThe identification of loci determining heat-induced browning of seed coats and co-segregating molecular markers will enable transfer of hbs alleles into cowpea varieties, contributing to higher quality seeds
The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks
© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 4591-4606, doi:10.5194/bg-10-4591-2013.The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk δ18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C–18O bond abundance, denoted by the measured parameter Δ47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of −1 to 29 °C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Δ47 and growth temperature. We also find that the slope of a linear regression through all the Δ47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Δ47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Δ47-temperature relationships between calcitic and aragonitic taxa.This work was funded by National Science
Foundation grants ARC-1215551 to R. A. Eagle and A. K. Tripati,
EAR-1024929 to R. A. Eagle and J. M. Eiler, and EAR-0949191 to
A. K. Tripati. A. K. Tripati is also supported by the Hellman Fellowship
program. Culture of bivalves in Kiel, Germany, was funded by the German
Science Foundation (DFG Ei272/21-1, to Anton Eisenhauer) and
the European Science Foundation (ESF) Collaborative Research
Project CASIOPEIA (04 ECLIM FP08). Determination of bivalve
mineralogy by J. B. Ries was funded by National Science
Foundation grant OCE-1031995
Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California.
The cowpea aphid Aphis craccivora Koch (CPA) is a destructive insect pest of cowpea, a staple legume crop in Sub-Saharan Africa and other semiarid warm tropics and subtropics. In California, CPA causes damage on all local cultivars from early vegetative to pod development growth stages. Sources of CPA resistance are available in African cowpea germplasm. However, their utilization in breeding is limited by the lack of information on inheritance, genomic location and marker linkage associations of the resistance determinants. In the research reported here, a recombinant inbred line (RIL) population derived from a cross between a susceptible California blackeye cultivar (CB27) and a resistant African breeding line (IT97K-556-6) was genotyped with 1,536 SNP markers. The RILs and parents were phenotyped for CPA resistance using field-based screenings during two main crop seasons in a 'hotspot' location for this pest within the primary growing region of the Central Valley of California. One minor and one major quantitative trait locus (QTL) were consistently mapped on linkage groups 1 and 7, respectively, both with favorable alleles contributed from IT97K-556-6. The major QTL appeared dominant based on a validation test in a related F2 population. SNP markers flanking each QTL were positioned in physical contigs carrying genes involved in plant defense based on synteny with related legumes. These markers could be used to introgress resistance alleles from IT97K-556-6 into susceptible local blackeye varieties by backcrossing
Young Seasonal Employees : How Work Conditions and Burnout Contribute to Turnover Intentions
To date there has been little research conducted on young seasonal workers, leaving a dearth in the literature regarding such things as how they react to their work environment and the outcomes of those reactions. This study focuses on burnout in young seasonal workers in the amusement park industry, using the job demands-resource model to make predictions. Surveys from 155 young seasonal workers at six amusement parks on the eastern coast of the US responded to surveys at two points in time measuring job demands, job resources, burnout, and intention to turnover. Hypotheses were tested using moderated regression to investigate how job demands moderated by job resources influences burnout and how burnout influences turnover intention. While burnout was strongly related to turnover intention, the results challenged the notion that job resources moderates the relationship between job demands and burnout. A reinterpretation of the results suggests that job resources directly influence burnout and this is moderated job demands such that as job resources were low and job demand increased, burnout also increased. Results suggest that studying this population is important as young adults may react differently to their environment than mature adults working in fulltime jobs. In addition, as job lack of job resources was related to burnout, it is suggested interventions targeting managers could be used to mitigate burnout in this population
Annually resolved North Atlantic marine climate over the last millennium
This is the final version of the article. Available from Nature Publishing Group via the DOI in this record.Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ(18)O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ(18)O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.We thank the members of the RV Bjarni Sæmundsson (Cruise No. B05-2006). This work was supported by the NERC-funded ULTRA project (Grant Number NE/H023356/1), NERC-funded CLAM project; (Project No. NE/N001176/1) and EU Millennium Project (Project number 017008). This study is a contribution to the Climate Change Consortium for Wales (C3W). We thank Brian Long (Bangor University) and Dr Julia Becker (Cardiff University) for their technical support, and Dr Manfred Mudelsee for his assistance with the trend analysis. We thank Dr Jessica Tierney and an anonymous reviewer for providing the constructive comments in the reviewing process
- …
