738 research outputs found
On The Linearity of The Black Hole - Bulge Mass Relation in Active and in Nearby Galaxies
Analysis of PG quasar observations suggests a nonlinear relation between the
black hole mass, M_BH, and the bulge mass, M_bulge, although a linear relation,
as proposed for nearby galaxies, cannot be ruled out. New M_BH values for
nearby galaxies from Gebhardt et al., and L_bulge measurements for Seyfert 1
galaxies from Virani et al., are used here to obtain a more accurate value for
the slope of the M_BH-M_bulge relation. The combined sample of 40 active and
non-active galaxies suggests a significantly nonlinear relation, M_BH\propto
M_bulge^{1.53\pm 0.14}. Further support for a nonlinear relation is provided by
the slope of the M_BH-stellar velocity dispersion relation found recently, and
by the low M_BH found in late type spiral galaxies. The mean M_BH/M_bulge ratio
is therefore not a universal constant, but rather drops from ~0.5% in bright
(M_V ~ -22) ellipticals, to ~0.05% in low luminosity (M_V ~ -18) bulges. Hubble
Space Telescope determinations of M_BH in late type spirals, and of the bulge
magnitude in narrow line Seyfert 1 galaxies (both predicted to have low M_BH),
can further test the validity of the nonlinear M_BH-M_bulge relation.Comment: Accepted for publication in ApJ, 9 pages inc. 2 figure
Optical Continuum and Emission-Line Variability of Seyfert 1 Galaxies
We present the light curves obtained during an eight-year program of optical
spectroscopic monitoring of nine Seyfert 1 galaxies: 3C 120, Akn 120, Mrk 79,
Mrk 110, Mrk 335, Mrk 509, Mrk 590, Mrk 704, and Mrk 817. All objects show
significant variability in both the continuum and emission-line fluxes. We use
cross-correlation analysis to derive the sizes of the broad Hbeta-emitting
regions based on emission-line time delays, or lags. We successfully measure
time delays for eight of the nine sources, and find values ranging from about
two weeks to a little over two months. Combining the measured lags and widths
of the variable parts of the emission lines allows us to make virial mass
estimates for the active nucleus in each galaxy. The virial masses are in the
range 10^{7-8} solar masses.Comment: 24 pages, 16 figures. Accepted for publication in Ap
A discrete time relativistic Toda lattice
Four integrable symplectic maps approximating two Hamiltonian flows from the
relativistic Toda hierarchy are introduced. They are demostrated to belong to
the same hierarchy and to examplify the general scheme for symplectic maps on
groups equiped with quadratic Poisson brackets. The initial value problem for
the difference equations is solved in terms of a factorization problem in a
group. Interpolating Hamiltonian flows are found for all the maps.Comment: 32 pages, LaTe
Magnetic Confinement, MHD Waves, and Smooth Line Profiles in AGN
In this paper, we show that if the broad line region clouds are in
approximate energy equipartition between the magnetic field and gravity, as
hypothesized by Rees, there will be a significant effect on the shape and
smoothness of broad emission line profiles in active galactic nuclei. Line
widths of contributing clouds or flow elements are much wider than their
thermal widths, due to the presence of non-dissipative MHD waves, and their
collective contribution produce emission line profiles broader and smoother
than would be expected if a magnetic field were not present. As an
illustration, a simple model of isotropically emitting clouds, normally
distributed in velocity, is used to show that smoothness can be achieved for
less than 80,000 clouds and may even be as low as a few hundred. We conclude
that magnetic confinement has far reaching consequences for observing and
modeling active galactic nuclei.Comment: to appear in MNRA
Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database
We present improved black hole masses for 35 active galactic nuclei (AGNs)
based on a complete and consistent reanalysis of broad emission-line
reverberation-mapping data. From objects with multiple line measurements, we
find that the highest precision measure of the virial product is obtained by
using the cross-correlation function centroid (as opposed to the
cross-correlation function peak) for the time delay and the line dispersion (as
opposed to full width half maximum) for the line width and by measuring the
line width in the variable part of the spectrum. Accurate line-width
measurement depends critically on avoiding contaminating features, in
particular the narrow components of the emission lines. We find that the
precision (or random component of the error) of reverberation-based black hole
mass measurements is typically around 30%, comparable to the precision attained
in measurement of black hole masses in quiescent galaxies by gas or stellar
dynamical methods. Based on results presented in a companion paper by Onken et
al., we provide a zero-point calibration for the reverberation-based black hole
mass scale by using the relationship between black hole mass and host-galaxy
bulge velocity dispersion. The scatter around this relationship implies that
the typical systematic uncertainties in reverberation-based black hole masses
are smaller than a factor of three. We present a preliminary version of a
mass-luminosity relationship that is much better defined than any previous
attempt. Scatter about the mass-luminosity relationship for these AGNs appears
to be real and could be correlated with either Eddington ratio or object
inclination.Comment: 61 pages, including 8 Tables and 16 Figures. Accepted for publication
in The Astrophysical Journa
X-ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies
By combining complementary monitoring observations spanning long, medium and
short time scales, we have constructed power spectral densities (PSDs) of six
Seyfert~1 galaxies. These PSDs span 4 orders of magnitude in temporal
frequency, sampling variations on time scales ranging from tens of minutes to
over a year. In at least four cases, the PSD shows a "break," a significant
departure from a power law, typically on time scales of order a few days. This
is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass
compact systems with breaks on time scales of seconds. NGC 3783 shows tentative
evidence for a doubly-broken power law, a feature that until now has only been
seen in the (much better-defined) PSDs of low-state XRBs. It is also
interesting that (when one previously-observed object is added to make a small
sample of seven), an apparently significant correlation is seen between the
break time scale and the putative black hole mass , while none
is seen between break time scale and luminosity. The data are consistent with
the linear relation T = M_{\rm BH}/10^{6.5} \Msun; extrapolation over 6--7
orders of magnitude is in reasonable agreement with XRBs. All of this
strengthens the case for a physical similarity between Seyfert~1s and XRBs.Comment: 27 pages, 13 figures. Accepted for publication in ApJ. Typo correcte
A Cutoff in the X-ray Fluctuation Power Density Spectrum of the Seyfert 1 Galaxy NGC 3516
During 1997 March-July, XTE observed the bright, strongly variable Seyfert 1
galaxy NGC 3516 once every ~12.8 hr for 4.5 months and nearly continuously
(with interruptions due to SAA passage but not Earth occultation) for a 4.2 day
period in the middle. These were followed by ongoing monitoring once every ~4.3
days. These data are used to construct the first well-determined X-ray
fluctuation power density spectrum (PDS) of an active galaxy to span more than
4 decades of usable temporal frequency. The PDS shows no signs of any strict or
quasi-periodicity, but does show a progressive flattening of the power-law
slope from -1.74 at short time scales to -0.73 at longer time scales. This is
the clearest observation to date of the long-predicted cutoff in the PDS. The
characteristic variability time scale corresponding to this cutoff temporal
frequency is 1 month. Although it is unclear how this time scale may be
interpreted in terms of a physical size or process, there are several promising
candidate models. The PDS appears similar to those seen for Galactic black hole
candidates such as Cyg X-1, suggesting that these two classes of objects with
very different luminosities and putative black hole masses (differing by more
than a factor of 10^5) may have similar X-ray generation processes and
structures.Comment: 21 pages, incl. 5 figures, AASTe
On the precision of the theoretical predictions for pi pi scattering
In a recent paper, Pelaez and Yndurain evaluate some of the low energy
observables of pi pi scattering and obtain flat disagreement with our earlier
results. The authors work with unsubtracted dispersion relations, so that their
results are very sensitive to the poorly known high energy behaviour of the
scattering amplitude. They claim that the asymptotic representation we used is
incorrect and propose an alternative one. We repeat their calculations on the
basis of the standard, subtracted fixed-t dispersion relations, using their
asymptotics. The outcome fully confirms our earlier findings. Moreover, we show
that the Regge parametrization proposed by these authors for the region above
1.4 GeV violates crossing symmetry: Their ansatz is not consistent with the
behaviour observed at low energies.Comment: Added more material, mostly in Sects. 7, 8 and 9, in support of the
same conclusions. Latex, 28 pages, 3 figure
Reverberation Mapping and the Physics of Active Galactic Nuclei
Reverberation-mapping campaigns have revolutionized our understanding of AGN.
They have allowed the direct determination of the broad-line region size,
enabled mapping of the gas distribution around the central black hole, and are
starting to resolve the continuum source structure. This review describes the
recent and successful campaigns of the International AGN Watch consortium,
outlines the theoretical background of reverberation mapping and the
calculation of transfer functions, and addresses the fundamental difficulties
of such experiments. It shows that such large-scale experiments have resulted
in a ``new BLR'' which is considerably different from the one we knew just ten
years ago. We discuss in some detail the more important new results, including
the luminosity-size-mass relationship for AGN, and suggest ways to proceed in
the near future.Comment: Review article to appear in Astronomical Time Series, Proceedings of
the Wise Observatory 25th Ann. Symposium. 24 pages including 7 figure
Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency
A new case of 3-hydroxyacyl-CoA dehydrogenase deficiency is described with a relatively benign course
- …
