572,509 research outputs found
The phase between the three gluon and one photon amplitudes in quarkonium decays
The phase between three-gluon and one-photon amplitudes in psi(2S) and
psi(3770) decays is analyzed.Comment: 5 pages, 4 figures, Talk given at Hadron 03: 10th International
Conference on Hadron Spectroscopy, Aschaffenburg, Germany, 31 Aug - 6 Sep
200
Nucleon magnetic form factors with non-local chiral effective Lagrangian
Chiral perturbation theory is a powerful method to investigate the hadron
properties. We apply the non-local chiral effective Lagrangian to study nucleon
magnetic form factors. The octet and decuplet intermediate states are included
in the one loop calculation. With the modified propagators and non-local
interactions, the loop integral is convergent. The obtained proton and neutron
magnetic form factors are both reasonable up to relatively large .Comment: 11 pages, 7 figures, 1 tables. arXiv admin note: text overlap with
arXiv:1210.507
Optical spectroscopy study of Nd(O,F)BiS2 single crystals
We present an optical spectroscopy study on F-substituted NdOBiS
superconducting single crystals grown using KCl/LiCl flux method. The
measurement reveals a simple metallic response with a relatively low screened
plasma edge near 5000 \cm. The plasma frequency is estimated to be 2.1 eV,
which is much smaller than the value expected from the first-principles
calculations for an electron doping level of x=0.5, but very close to the value
based on a doping level of 7 of itinerant electrons per Bi site as
determined by ARPES experiment. The energy scales of the interband transitions
are also well reproduced by the first-principles calculations. The results
suggest an absence of correlation effect in the compound, which essentially
rules out the exotic pairing mechanism for superconductivity or scenario based
on the strong electronic correlation effect. The study also reveals that the
system is far from a CDW instability as being widely discussed for a doping
level of x=0.5.Comment: 5 pages, 5 figure
Liquid-gas phase transition in nuclear matter including strangeness
We apply the chiral SU(3) quark mean field model to study the properties of
strange hadronic matter at finite temperature. The liquid-gas phase transition
is studied as a function of the strangeness fraction. The pressure of the
system cannot remain constant during the phase transition, since there are two
independent conserved charges (baryon and strangeness number). In a range of
temperatures around 15 MeV (precise values depending on the model used) the
equation of state exhibits multiple bifurcates. The difference in the
strangeness fraction between the liquid and gas phases is small when they
coexist. The critical temperature of strange matter turns out to be a
non-trivial function of the strangeness fraction.Comment: 15 pages, 7 figure
Multiple imputation for sharing precise geographies in public use data
When releasing data to the public, data stewards are ethically and often
legally obligated to protect the confidentiality of data subjects' identities
and sensitive attributes. They also strive to release data that are informative
for a wide range of secondary analyses. Achieving both objectives is
particularly challenging when data stewards seek to release highly resolved
geographical information. We present an approach for protecting the
confidentiality of data with geographic identifiers based on multiple
imputation. The basic idea is to convert geography to latitude and longitude,
estimate a bivariate response model conditional on attributes, and simulate new
latitude and longitude values from these models. We illustrate the proposed
methods using data describing causes of death in Durham, North Carolina. In the
context of the application, we present a straightforward tool for generating
simulated geographies and attributes based on regression trees, and we present
methods for assessing disclosure risks with such simulated data.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS506 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Background stratospheric aerosol reference model
In this analysis, a reference background stratospheric aerosol optical model is developed based on the nearly global SAGE 1 satellite observations in the non-volcanic period from March 1979 to February 1980. Zonally averaged profiles of the 1.0 micron aerosol extinction for the tropics and the mid- and high-altitudes for both hemispheres are obtained and presented in graphical and tabulated form for the different seasons. In addition, analytic expressions for these seasonal global zonal means, as well as the yearly global mean, are determined according to a third order polynomial fit to the vertical profile data set. This proposed background stratospheric aerosol model can be useful in modeling studies of stratospheric aerosols and for simulations of atmospheric radiative transfer and radiance calculations in atmospheric remote sensing
H∞ controller design for networked predictive control systems based on the average dwell-time approach
This brief focuses on the problem of H∞ control for a class of networked control systems with time-varying delay in both forward and backward channels. Based on the average dwell-time method, a novel delay-compensation strategy is proposed by appropriately assigning the subsystem or designing the switching signals. Combined with this strategy, an improved predictive controller design approach in which the controller gain varies with the delay is presented to guarantee that the closed-loop system is exponentially stable with an H∞-norm bound for a class of switching signal in terms of nonlinear matrix inequalities. Furthermore, an iterative algorithm is presented to solve these nonlinear matrix inequalities to obtain a suboptimal minimum disturbance attenuation level. A numerical example illustrates the effectiveness of the proposed method
Optical properties of TlNi2Se2: Observation of pseudogap formation
The quasi-two-dimensional nickel chalcogenides is a newly
discovered superconductor. We have performed optical spectroscopy study on
single crystals over a broad frequency range at various
temperatures. The overall optical reflectance spectra are similar to those
observed in its isostructure . Both the suppression in
and the peaklike feature in suggest the progressive
formation of a pseudogap feature in the midinfrared range with decreasing
temperatures, which might be originated from the dynamic local fluctuation of
charge-density-wave (CDW) instability. We propose that the CDW instability in
is driven by the saddle points mechanism, due to the existence of
van Hove singularity very close to the Fermi energy.Comment: 5 pages, 4 figure
New Primordial-Magnetic-Field Limit from The Latest LIGO S5 data
Since the energy momentum tensor of a magnetic field always contains a spin-2
component in its anisotropic stress, stochastic primordial magnetic field (PMF)
in the early universe must generate stochastic gravitational wave (GW)
background. This process will greatly affect the relic gravitational wave
(RGW), which is one of major scientific goals of the laser interferometer GW
detections. Recently, the fifth science (S5) run of laser interferometer
gravitational-wave observatory (LIGO) gave a latest upper limit
on the RGW background. Utilizing this upper
limit, we derive new PMF Limits: for a scale of galactic cluster
Mpc, the amplitude of PMF, that produced by the electroweak phase transition
(EPT), has to be weaker than Gauss; for a
scale of supercluster Mpc, the amplitude of PMF has to be weaker
than Gauss. In this manner, GW observation
has potential to make interesting contributions to the study of primordial
magnetic field.Comment: 17 pages, 3 figures, accepted for publication in PR
- …
