372,540 research outputs found
Thermal spin current and spin accumulation at ferromagnetic insulator/nonmagnetic metal interface
Spin current injection and spin accumulation near a ferromagnetic insulator
(FI)/nonmagnetic metal (NM) bilayer film under a thermal gradient is
investigated theoretically. Using the Fermi golden rule and the Boltzmann
equations, we find that FI and NM can exchange spins via interfacial
electron-magnon scattering because of the imbalance between magnon emission and
absorption caused by either non-equilibrium distribution of magnons or
non-equilibrium between magnons and electrons. A temperature gradient in FI
and/or a temperature difference across the FI/NM interface generates a spin
current which carries angular momenta parallel to the magnetization of FI from
the hotter side to the colder one. Interestingly, the spin current induced by a
temperature gradient in NM is negligibly small due to the nonmagnetic nature of
the non-equilibrium electron distributions. The results agree well with all
existing experiments.Comment: 8 pages, 2 figure
Breaking the current density threshold in spin-orbit-torque magnetic random access memory
Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising
technology for the next generation of data storage devices. The main bottleneck
of this technology is the high reversal current density threshold. This
outstanding problem of SOT-MRAM is now solved by using a current density of
constant magnitude and varying flow direction that reduces the reversal current
density threshold by a factor of more than the Gilbert damping coefficient. The
Euler-Lagrange equation for the fastest magnetization reversal path and the
optimal current pulse are derived for an arbitrary magnetic cell. The
theoretical limit of minimal reversal current density and current density for a
GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are
respectively of the order of A/cm and A/cm far below
A/cm and A/cm in the conventional strategy. Furthermore,
no external magnetic field is needed for a deterministic reversal in the new
strategy
- …
