790 research outputs found

    Claudin expression during early postnatal development of the murine cochlea

    Get PDF
    Citation: Kudo, T., Wangemann, P., & Marcus, D. C. (2018). Claudin expression during early postnatal development of the murine cochlea. BMC Physiology, 18(1), 1. https://doi.org/10.1186/s12899-018-0035-1Background: Claudins are major components of tight junctions, which form the paracellular barrier between the cochlear luminal and abluminal fluid compartments that supports the large transepithelial voltage difference and the large concentration differences of K+, Na+ and Ca2+ needed for normal cochlear function. Claudins are a family of more than 20 subtypes, but our knowledge about expression and localization of each subtype in the cochlea is limited. Results: We examined by quantitative RT-PCR the expression of the mRNA of 24 claudin isoforms in mouse cochlea during postnatal development and localized the expression in separated fractions of the cochlea. Transcripts of 21 claudin isoforms were detected at all ages, while 3 isoforms (Cldn-16, ??17 and ??18) were not detected. Claudins that increased expression during development include Cldn-9, ??13, ??14, ??15, and -19v2, while Cldn-6 decreased. Those that do not change expression level during postnatal development include Cldn-1, ??2, ??3, ??4, ??5, ??7, ??8, ?10v1, ?10v2, ??11, ??12, ?19v1, ??20, ??22, and???23. Our investigation revealed unique localization of some claudins. In particular, Cldn-13 expression rapidly increases during early development and is mainly expressed in bone but only minimally in the lateral wall (including stria vascularis) and in the medial region (including the organ of Corti). No statistically significant changes in expression of Cldn-11, ??13, or ??14 were found in the cochlea of Slc26a4 ?/? mice compared to Slc26a4 +/? mice. Conclusions: We demonstrated developmental patterns of claudin isoform transcript expression in the murine cochlea. Most of the claudins were associated with stria vascularis and organ of Corti, tissue fractions rich in tight junctions. However, this study suggests a novel function of Cldn-13 in the cochlea, which may be linked to cochlear bone marrow maturation

    The gastric H,K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion

    Get PDF
    Citation: Miyazaki, H., Wangemann, P., & Marcus, D. C. (2016). The gastric H,K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion. BMC Physiology, 17(1), 1. https://doi.org/10.1186/s12899-016-0024-1Background Disturbance of acid–base balance in the inner ear is known to be associated with hearing loss in a number of conditions including genetic mutations and pharmacologic interventions. Several previous physiologic and immunohistochemical observations lead to proposals of the involvement of acid–base transporters in stria vascularis. Results We directly measured acid flux in vitro from the apical side of isolated stria vascularis from adult C57Bl/6 mice with a novel constant-perfusion pH-selective self-referencing probe. Acid efflux that depended on metabolism and ion transport was observed from the apical side of stria vascularis. The acid flux was decreased to about 40 % of control by removal of the metabolic substrate (glucose-free) and by inhibition of the sodium pump (ouabain). The flux was also decreased a) by inhibition of Na,H-exchangers by amiloride, dimethylamiloride (DMA), S3226 and Hoe694, b) by inhibition of Na,2Cl,K-cotransporter (NKCC1) by bumetanide, and c) by the likely inhibition of HCO3/anion exchange by DIDS. By contrast, the acid flux was increased by inhibition of gastric H,K-ATPase (SCH28080) but was not affected by an inhibitor of vH-ATPase (bafilomycin). K flux from stria vascularis was reduced less than 5 % by SCH28080. Conclusions These observations suggest that stria vascularis may be an important site of control of cochlear acid–base balance and demonstrate a functional role of several acid–base transporters in stria vascularis, including basolateral H,K-ATPase and apical Na,H-exchange. Previous suggestions that H secretion is mediated by an apical vH-ATPase and that basolateral H,K-ATPase contributes importantly to K secretion in stria vascularis are not supported. These results advance our understanding of inner ear acid–base balance and provide a stronger basis to interpret the etiology of genetic and pharmacologic cochlear dysfunctions that are influenced by endolymphatic pH

    Electrophysiological effects of 5-hydroxytryptamine on isolated human atrial myocytes, and the influence of chronic beta-adrenoceptor blockade

    Get PDF
    <b>1.</b> 5-Hydroxytryptamine (5-HT) has been postulated to play a proarrhythmic role in the human atria via stimulation of 5-HT<sub>4</sub> receptors. <b>2.</b> The aims of this study were to examine the effects of 5-HT on the L-type Ca<sup>2+</sup> current (<i>I</i><sub>CaL</sub>) action potential duration (APD), the effective refractory period (ERP) and arrhythmic activity in human atrial cells, and to assess the effects of prior treatment with β-adrenoceptor antagonists. <b>3.</b> Isolated myocytes, from the right atrial appendage of 27 consenting patients undergoing cardiac surgery who were in sinus rhythm, were studied using the whole-cell perforated patch-clamp technique at 37ºC. <b>4.</b> 5-HT (1 n-10 μM) caused a concentration-dependent increase in <i>I</i><sub>CaL</sub>, which was potentiated in cells from β-blocked (maximum response to 5-HT, E<sub>max</sub>=299±12% increase above control) compared to non-β-blocked patients (E<sub>max</sub>=220±6%, P<0.05), but with no change in either the potency (log EC<sub>50</sub>: -7.09±0.07 vs -7.26±0.06) or Hill coefficient (<i>n</i><sub>H</sub>: 1.5±0.6 vs 1.5±0.3) of the 5-HT concentration-response curve. <b>5.</b> 5-HT (10 μM) produced a greater increase in the APD at 50% repolarisation (APD50) in cells from β-blocked patients (of 37±10 ms, i.e. 589±197%) vs non-β-blocked patients (of 10±4 ms, i.e. 157±54%; P<0.05). Both the APD<sub>90</sub> and the ERP were unaffected by 5-HT. <b>6.</b> Arrhythmic activity was observed in response to 5-HT in five of 17 cells (29%) studied from β-blocked, compared to zero of 16 cells from the non-β-blocked patients (P<0.05). <b>7.</b> In summary, the 5-HT-induced increase in calcium current was associated with a prolonged early plateau phase of repolarisation, but not late repolarisation or refractoriness, and the enhancement of these effects by chronic β-adrenoceptor blockade was associated with arrhythmic potential

    Slc26a7 chloride channel activity and localization in mouse Reissner’s membrane epithelium

    Get PDF
    Several members of the SLC26 gene family have highly-restricted expression patterns in the auditory and vestibular periphery and mutations in mice of at least two of these (SLC26A4 and SLC26A5) lead to deficits in hearing and/or balance. A previous report pointed to SLC26A7 as a candidate gene important for cochlear function. In the present study, inner ears were assayed by immunostaining for Slc26a7 in neonatal and adult mice. Slc26a7 was detected in the basolateral membrane of Reissner’s membrane epithelial cells but not neighboring cells, with an onset of expression at P5; gene knockout resulted in the absence of protein expression in Reissner’s membrane. Whole-cell patch clamp recordings revealed anion currents and conductances that were elevated for NO[subscript 3]ˉ over Clˉ and inhibited by Iˉ and NPPB. Elevated NO[subscript 3]ˉ currents were absent in Slc26a7 knockout mice. There were, however, no major changes to hearing (auditory brainstem response) of knockout mice during early adult life under constitutive and noise exposure conditions. The lack of Slc26a7 protein expression found in the wild-type vestibular labyrinth was consistent with the observation of normal balance. We conclude that SLC26A7 participates in Clˉ transport in Reissner’s membrane epithelial cells, but that either other anion pathways, such as ClC-2, possibly substitute satisfactorily under the conditions tested or that Clˉ conductance in these cells is not critical to cochlear function. The involvement of SLC26A7 in cellular pH regulation in other epithelial cells leaves open the possibility that SLC26A7 is needed in Reissner’s membrane cells during local perturbations of pH

    Chronosequence of Terrace Soils in Western South Dakota

    Get PDF
    Soils on the high terraces of the Cheyenne River in Haakon County, South Dakota have long been recognized as important to the agriculture of the area. Data from this study as well as Haakon County Extension Service and Soil Conservation Service knowledge of the area will complement the soil survey in progress and provide a broader base of information for the future management of this important agricultural resource. This study will also help to quantify some of the properties that set the high terrace series apart from the surrounding shale uplands. Similar sets of high terrace systems along other major east flowing tributaries to the Missouri River have been studied by Warren, Crandell, Flint, and White. Agreement as to the glacial period that caused their isolation has not been reached. Soil morphology of the Cheyenne river terraces will supplement the accumulated data leading toward the resolution of this question. The objectives of this study were: (1) to characterize the morphological, mineralogical, edaphic, physical, and selected chemical properties of the terrace soils; (2) examine the impact of time upon the genesis· of these soils; (3) classify and identify soil series on the various terrace levels; (4) apply the characterization to land use interpretation

    Failure of Fluid Absorption in the Endolymphatic Sac Initiates Cochlear Enlargement that Leads to Deafness in Mice Lacking Pendrin Expression

    Get PDF
    Mutations of SLC26A4 are among the most prevalent causes of hereditary deafness. Deafness in the corresponding mouse model, Slc26a4−/−, results from an abnormally enlarged cochlear lumen. The goal of this study was to determine whether the cochlear enlargement originates with defective cochlear fluid transport or with a malfunction of fluid transport in the connected compartments, which are the vestibular labyrinth and the endolymphatic sac. Embryonic inner ears from Slc26a4+/− and Slc26a4−/− mice were examined by confocal microscopy ex vivo or after 2 days of organ culture. Culture allowed observations of intact, ligated or partially resected inner ears. Cochlear lumen formation was found to begin at the base of the cochlea between embryonic day (E) 13.5 and 14.5. Enlargement was immediately evident in Slc26a4−/− compared to Slc26a4+/− mice. In Slc26a4+/− and Slc26a4−/− mice, separation of the cochlea from the vestibular labyrinth by ligation at E14.5 resulted in a reduced cochlear lumen. Resection of the endolymphatic sacs at E14.5 led to an enlarged cochlear lumen in Slc26a4+/− mice but caused no further enlargement of the already enlarged cochlear lumen in Slc26a4−/− mice. Ligation or resection performed later, at E17.5, did not alter the cochlea lumen. In conclusion, the data suggest that cochlear lumen formation is initiated by fluid secretion in the vestibular labyrinth and temporarily controlled by fluid absorption in the endolymphatic sac. Failure of fluid absorption in the endolymphatic sac due to lack of Slc26a4 expression appears to initiate cochlear enlargement in mice, and possibly humans, lacking functional Slc26a4 expression

    Modeling the Measurements of Cochlear Microcirculation and Hearing Function after Loud Noise

    Get PDF
    Objective: Recent findings support the crucial role of microcirculatory disturbance and ischemia for hearing impairment especially after noise-induced hearing loss (NIHL). The aim of this study was to establish an animal model for in vivo analysis of cochlear microcirculation and hearing function after a loud noise to allow precise measurements of both parameters in vivo. Study Design: Randomized controlled trial. Setting: Animal study. Subjects and Methods: After assessment of normacusis (0 minutes) using evoked auditory brainstem responses (ABRs), noise (106-dB sound pressure level [SPL]) was applied to both ears in 6 guinea pigs for 30 minutes while unexposed animals served as controls. In vivo fluorescence microscopy of the stria vascularis capillaries was performed after surgical exposure of 1 cochlea. ABR measurements were derived from the contralateral ear. Results: After noise exposure, red blood cell velocity was reduced significantly by 24.3% (120 minutes) and further decreased to 44.5% at the end of the observation (210 minutes) in contrast to stable control measurements. Vessel diameters were not affected in both groups. A gradual decrease of segmental blood flow became significant (38.1%) after 150 minutes compared with controls. Hearing thresholds shifted significantly from 20.0 ± 5.5 dB SPL (0 minutes) to 32.5 ± 4.2dB SPL (60 minutes) only in animals exposed to loud noise. Conclusion: With regard to novel treatments targeting the stria vascularis in NIHL, this standardized model allows us to analyze in detail cochlear microcirculation and hearing function in vivo

    Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects.

    Get PDF
    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette transporter superfamily that functions as an epithelial chloride channel. Gating of the CFTR ion conduction pore involves a conserved irreversible cyclic mechanism driven by ATP binding and hydrolysis at two cytosolic nucleotide-binding domains (NBDs): formation of an intramolecular NBD dimer that occludes two ATP molecules opens the pore, whereas dimer disruption after ATP hydrolysis closes it. CFTR dysfunction resulting from inherited mutations causes CF. The most common CF mutation, deletion of phenylalanine 508 (DeltaF508), impairs both protein folding and processing and channel gating. Development of DeltaF508 CFTR correctors (to increase cell surface expression) and potentiators (to enhance open probability, Po) is therefore a key focus of CF research. The practical utility of 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB), one of the most efficacious potentiators of DeltaF508 CFTR identified to date, is limited by its pore-blocking side effect. NPPB-mediated stimulation of Po is unique in that it involves modulation of gating transition state stability. Although stabilization by NPPB of the transition state for pore opening enhances both the rate of channel opening and the very slow rate of nonhydrolytic closure, because of CFTR's cyclic gating mechanism, the net effect is Po stimulation. In addition, slowing of ATP hydrolysis by NPPB delays pore closure, further enhancing Po. Here we show that NPPB stimulates gating at a site outside the pore and that these individual actions of NPPB on CFTR are fully attributable to one or the other of its two complementary molecular parts, 3-nitrobenzoate (3NB) and 3-phenylpropylamine (3PP), both of which stimulate Po: the pore-blocking 3NB selectively stabilizes the transition state for opening, whereas the nonblocking 3PP selectively slows the ATP hydrolysis step. Understanding structure-activity relationships of NPPB might prove useful for designing potent, clinically relevant CFTR potentiators

    Gender Differences in Myogenic Regulation along the Vascular Tree of the Gerbil Cochlea

    Get PDF
    Regulation of cochlear blood flow is critical for hearing due to its exquisite sensitivity to ischemia and oxidative stress. Many forms of hearing loss such as sensorineural hearing loss and presbyacusis may involve or be aggravated by blood flow disorders. Animal experiments and clinical outcomes further suggest that there is a gender preference in hearing loss, with males being more susceptible. Autoregulation of cochlear blood flow has been demonstrated in some animal models in vivo, suggesting that similar to the brain, blood vessels supplying the cochlea have the ability to control flow within normal limits, despite variations in systemic blood pressure. Here, we investigated myogenic regulation in the cochlear blood supply of the Mongolian gerbil, a widely used animal model in hearing research. The cochlear blood supply originates at the basilar artery, followed by the anterior inferior cerebellar artery, and inside the inner ear, by the spiral modiolar artery and the radiating arterioles that supply the capillary beds of the spiral ligament and stria vascularis. Arteries from male and female gerbils were isolated and pressurized using a concentric pipette system. Diameter changes in response to increasing luminal pressures were recorded by laser scanning microscopy. Our results show that cochlear vessels from male and female gerbils exhibit myogenic regulation but with important differences. Whereas in male gerbils, both spiral modiolar arteries and radiating arterioles exhibited pressure-dependent tone, in females, only radiating arterioles had this property. Male spiral modiolar arteries responded more to L-NNA than female spiral modiolar arteries, suggesting that NO-dependent mechanisms play a bigger role in the myogenic regulation of male than female gerbil cochlear vessels

    Calcium sparks in the intact gerbil spiral modiolar artery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calcium sparks are ryanodine receptor mediated transient calcium signals that have been shown to hyperpolarize the membrane potential by activating large conductance calcium activated potassium (BK) channels in vascular smooth muscle cells. Along with voltage-dependent calcium channels, they form a signaling unit that has a vasodilatory influence on vascular diameter and regulation of myogenic tone. The existence and role of calcium sparks has hitherto been unexplored in the spiral modiolar artery, the end artery that controls blood flow to the cochlea. The goal of the present study was to determine the presence and properties of calcium sparks in the intact gerbil spiral modiolar artery.</p> <p>Results</p> <p>Calcium sparks were recorded from smooth muscle cells of intact arteries loaded with fluo-4 AM. Calcium sparks occurred with a frequency of 2.6 Hz, a rise time of 17 ms and a time to half-decay of 20 ms. Ryanodine reduced spark frequency within 3 min from 2.6 to 0.6 Hz. Caffeine (1 mM) increased spark frequency from 2.3 to 3.3 Hz and prolonged rise and half-decay times from 17 to 19 ms and from 20 to 23 ms, respectively. Elevation of potassium (3.6 to 37.5 mM), presumably via depolarization, increased spark frequency from 2.4 to 3.2 Hz. Neither ryanodine nor depolarization changed rise or decay times.</p> <p>Conclusions</p> <p>This is the first characterization of calcium sparks in smooth muscle cells of the spiral modiolar artery. The results suggest that calcium sparks may regulate the diameter of the spiral modiolar artery and cochlear blood flow.</p
    corecore