451 research outputs found

    Water, rather than temperature, dominantly impacts how soil fauna affect dissolved carbon and nitrogen release from fresh litter during early litter decomposition

    Get PDF
    Longstanding observations suggest that dissolved materials are lost from fresh litter through leaching, but the role of soil fauna in controlling this process has been poorly documented. In this study, a litterbag experiment employing litterbags with different mesh sizes (3 mm to permit soil fauna access and 0.04 mm to exclude fauna access) was conducted in three habitats (arid valley, ecotone and subalpine forest) with changes in climate and vegetation types to evaluate the effects of soil fauna on the concentrations of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) during the first year of decomposition. The results showed that the individual density and community abundance of soil fauna greatly varied among these habitats, but Prostigmata, Isotomidae and Oribatida were the dominant soil invertebrates. At the end of the experiment, the mass remaining of foliar litter ranged from 58% for shrub litter to 77% for birch litter, and the DOC and TDN concentrations decreased to 54%-85% and increased to 34%-269%, respectively, when soil fauna were not present. The effects of soil fauna on the concentrations of both DOC and TDN in foliar litter were greater in the subalpine forest (wetter but colder) during the winter and in the arid valley (warmer but drier) during the growing season, and this effect was positively correlated with water content. Moreover, the effects of fauna on DOC and TDN concentrations were greater for high-quality litter and were related to the C/N ratio. These results suggest that water, rather than temperature, dominates how fauna affect the release of dissolved substances from fresh litter

    (Why) Is My Prompt Getting Worse? Rethinking Regression Testing for Evolving LLM APIs

    Full text link
    Large Language Models (LLMs) are increasingly integrated into software applications. Downstream application developers often access LLMs through APIs provided as a service. However, LLM APIs are often updated silently and scheduled to be deprecated, forcing users to continuously adapt to evolving models. This can cause performance regression and affect prompt design choices, as evidenced by our case study on toxicity detection. Based on our case study, we emphasize the need for and re-examine the concept of regression testing for evolving LLM APIs. We argue that regression testing LLMs requires fundamental changes to traditional testing approaches, due to different correctness notions, prompting brittleness, and non-determinism in LLM APIs.Comment: conference versio

    Anti-periodic solution for fuzzy Cohen–Grossberg neural networks with time-varying and distributed delays

    Get PDF
    In this paper, by using a continuation theorem of coincidence degree theory and a differential inequality, we establish some sufficient conditions ensuring the existence and global exponential stability of anti-periodic solutions for a class of fuzzy Cohen–Grossberg neural networks with time-varying and distributed delays. In addition, we present an illustrative example to show the feasibility of obtained results

    The role of decaying logs in nursing soil fungal diversity varies with decay classes in the forest ecosystem

    Get PDF
    Soil fungi are crucial drivers of log decomposition in forest ecosystems, buthow soil fungal community composition varies during the process of logdecomposition remains poorly understood. We conducted an experiment incu-bating decaying logs in a subalpine coniferous forest on the eastern Qinghai-Tibet Plateau, China. Five classes of decaying Minjiang fir (Abies faxoniana)logs were incubated on the forest floor, and the composition and diversity offungal communities in soils underneath decaying logs were measured usinghigh-throughput sequencing. A total of 4321 operational taxonomic units(OTUs) were detected by Illumina NovaSeq sequencing analysis. Soil fungaldiversity differed significantly during the process of log decomposition andwas highest in decay classes III or IV. Basidiomycota and Ascomycota weredominant phyla regardless of log decay classes. Moreover, the proportion ofarbuscular mycorrhiza, wood saprotroph and saprotrophs increased during theprocess of log decomposition, but that of ectomycorrhiza decreased. The struc-ture of soil fungal community underneath decaying logs varied greatly withdecay classes. Different decay classes of logs favour special fungal groups,implying that the ecological effects of logs at differing decay classes on soil fun-gal communities were different

    Formation of forest gaps accelerates C, N and P release from foliar litter during 4 years of decomposition in an alpine forest

    Get PDF
    Relative to areas under canopy, the soils in forest gaps receive more irradiance and rainfall (snowfall); this change in microclimate induced by forest gaps may influence the release of carbon (C) and nutrients during litter decomposition. However, great uncertainty remains about the effects of forest gaps on litter decomposition. In this study, we incubated foliar litters from six tree and shrub species in forest gaps and canopy plots and measured the release of C, nitrogen (N) and phosphorus (P) in different snow cover periods in an alpine forest from 2012 to 2016. We found that N was retained by 24-46% but that P was immediately released during an early stage of decomposition. However, forest gaps decreased litter N retention, resulting in more N and P being released from decomposing litters for certain species (i.e., larch, birch and willow litters). Moreover, the release of C and nutrients during litter decomposition stimulated by forest gaps was primarily driven by warmer soil temperature in this high-altitude forest. We conclude that gap formation during forest regeneration may accelerate C turnover and nutrient cycling and that this stimulation might be regulated by the litter species in this seasonally snow-covered forest.Peer reviewe

    Tissue type and location within forest together regulate decay trajectories of Abies faxoniana logs at early and mid-decay stage

    Get PDF
    Deadwood decomposition plays a crucial role in global carbon and nutrient cycles. Factors controlling deadwood decomposition at local scales could also have strong effects at broader scales. We tested how trait variation within stems (i.e. tissue types) and forest habitat heterogeneity (i.e. location within forest) together influence the deadwood decay trajectory and decay rate. We conducted an in situ decomposition experiment of Abies faxoniana logs in an alpine forest on the eastern Qinghai-Tibetan Plateau, decomposing logs from a series of decay classes I-III (on a 5-class scale) for five years on the forest floor in canopy gap, gap edge and under closed canopy (each sized 25 ± 3 × 25 ± 3 m). We found strong differences in density and chemical composition between tissue types at least across decay classes I-III, which revealed the distinct contribution of each tissue type to carbon and nutrient cycling. There were remarkable interactions of tissue types and locations within forest. We found bark always decomposed faster than wood, while heartwood can decompose faster than sapwood in canopy edge and canopy gap. Locations within forest influenced the best fit decay model and decay rate of bark and sapwood in the same way, while it had no corresponding effects for heartwood decay dynamics. The largest difference in T0.25 and T0.4 (time to 25% and 40% mass loss) between locations were 1.52 and 3.21 (bark), 19.41 and 37.61 (wood overall), 31.82 and 60.15 (sapwood), and 12.86 and 22.84 (heartwood), respectively. We also found that pH was significantly negatively related with sapwood and heartwood mass loss, demonstrating that pH can potentially be applied to evaluate sapwood and heartwood mass loss when density correction is difficult to achieve at least at early to mid-decay stages. However, whether pH is a powerful predictor of decomposition trajectory across more species and biomes remains to be tested. We strongly recommend that further model predictions of coarse log decay include radial positions within stem and locations within forest as factors to increase the reliability of carbon budget estimates

    Short-Term Outcome of Patients with Cirrhosis and Concurrent Portal Cavernoma Presenting with Acute Variceal Bleeding

    Get PDF
    Background and Aim. The outcome of cirrhotic patients with main portal vein occlusion and portal cavernoma after the first episode of acute variceal bleeding (AVB) is unknown. We compared short-term outcomes after AVB in cirrhotic patients with and without portal cavernoma. Methods. Between January 2009 and September 2014, 28 patients with cirrhosis and portal cavernoma presenting with the first occurrence of AVB and 56 age-, sex-, and Child-Pugh score-matched cirrhotic patients without portal cavernoma were included. The primary endpoints were 5-day treatment failure and 6-week mortality. Results. The 5-day treatment failure rate was higher in the cavernoma group than in the control group (32.1% versus 12.5%; p=0.031). The 6-week mortality rate did not differ between the cavernoma and control group (25% versus 12.5%, p=0.137). Multivariable Cox proportional hazard regression analyses revealed that 5-day treatment failure (HR = 1.223, 95% CI = 1.082 to 1.384; p=0.001) independently predicted 6-week mortality. Conclusions. Cirrhotic patients with AVB and portal cavernoma have worse short-term prognosis than patients without portal cavernoma. The 5-day treatment failure was an independent risk factor for 6-week mortality in patients with cirrhosis and portal cavernoma

    Case Report: Whole-exome sequencing identified two novel COMP variants causing pseudoachondroplasia

    Get PDF
    Pseudoachondroplasia (PSACH) is a rare, dominant genetic disorder affecting bone and cartilage development, characterized by short-limb short stature, brachydactyly, loose joints, joint stiffness, and pain. The disorder is caused by mutations in the COMP gene, which encodes a protein that plays a role in the formation of collagen fibers. In this study, we present the clinical and genetic characteristics of PSACH in two Chinese families. Whole-exome sequencing (WES) analysis revealed two novel missense variants in the COMP gene: NM_000095.3: c.1319G>T (p.G440V, maternal) and NM_000095.3: c.1304A>T (p.D435V, paternal-mosaic). Strikingly, both the G440V and D435V mutations were located in the same T3 repeat motif and exhibited the potential to form hydrogen bonds with each other. Upon further analysis using Missense3D and PyMOL, we ascertained that these mutations showed the propensity to disrupt the protein structure of COMP, thus hampering its functioning. Our findings expand the existing knowledge of the genetic etiology underlying PSACH. The identification of new variants in the COMP gene can broaden the range of mutations linked with the condition. This information can contribute to the diagnosis and genetic counseling of patients with PSACH

    Case report: A novel 10.8-kb deletion identified in the β-globin gene through the long-read sequencing technology in a Chinese family with abnormal hemoglobin testing results

    Get PDF
    BackgroundThalassemia is a common inherited hemoglobin disorder caused by a deficiency of one or more globin subunits. Substitution variants and deletions in the HBB gene are the major causes of β-thalassemia, of which large fragment deletions are rare and difficult to be detected by conventional polymerase chain reaction (PCR)-based methods.Case reportIn this study, we reported a 26-year-old Han Chinese man, whose routine blood parameters were found to be abnormal. Hemoglobin testing was performed on the proband and his family members, of whom only the proband's mother had normal parameters. The comprehensive analysis of thalassemia alleles (CATSA, a long-read sequencing-based approach) was performed to identify the causative variants. We finally found a novel 10.8-kb deletion including the β-globin (HBB) gene (Chr11:5216601-5227407, GRch38/hg38) of the proband and his father and brother, which were consistent with their hemoglobin testing results. The copy number and exact breakpoints of the deletion were confirmed by multiplex ligation-dependent probe amplification (MLPA) and gap-polymerase chain reaction (Gap-PCR) as well as Sanger sequencing, respectively.ConclusionWith this novel large deletion found in the HBB gene in China, we expand the genotype spectrum of β-thalassemia and show the advantages of long-read sequencing (LRS) for comprehensive and precise detection of thalassemia variants
    corecore