3,677 research outputs found

    Pacific Salmon, Oncorhynchus spp., and the Definition of "Species" Under the Endangered Species Act

    Get PDF
    For purposes ofthe Endangered Species Act (ESA), a "species" is defined to include "any distinct population segment of any species of vertebrate fish or wildlife which interbreeds when mature. "Federal agencies charged with carrying out the provisions of the ESA have struggled for over a decade to develop a consistent approach for interpreting the term "distinct population segment." This paper outlines such an approach and explains in some detail how it can be applied to ESA evaluations of anadromous Pacific salmonids. The following definition is proposed: A population (or group of populations) will be considered "distinct" (and hence a "species ")for purposes of the ESA if it represents an evolutionarily significant unit (ESU) of the biological species. A population must satisfy two criteria to be considered an ESU: 1) It must be substantially reproductively isolated from other conspecific population units, and 2) It must represent an important component in the evolutionary legacy of the species. Isolation does not have to be absolute, but it must be strong enough to permit evolutionarily important differences to accrue in different population units. The second criterion would be met if the population contributes substantially to the ecological/genetic diversity of the species as a whole. Insights into the extent of reproductive isolation can be provided by movements of tagged fish, natural recolonization rates observed in other populations, measurements of genetic differences between populations, and evaluations of the efficacy of natural barriers. Each of these methods has its limitations. Identification of physical barriers to genetic exchange can help define the geographic extent of distinct populations, but reliance on physical features alone can be misleading in the absence of supporting biological information. Physical tags provide information about the movements of individual fish but not the genetic consequences of migration. Furthermore, measurements ofc urrent straying or recolonization rates provide no direct information about the magnitude or consistency of such rates in the past. In this respect, data from protein electrophoresis or DNA analyses can be very useful because they reflect levels of gene flow that have occurred over evolutionary time scales. The best strategy is to use all available lines of evidence for or against reproductive isolation, recognizing the limitations of each and taking advantage of the often complementary nature of the different types of information. If available evidence indicates significant reproductive isolation, the next step is to determine whether the population in question is of substantial ecological/genetic importance to the species as a whole. In other words, if the population became extinct, would this event represent a significant loss to the ecological/genetic diversity of thes pecies? In making this determination, the following questions are relevant: 1) Is the population genetically distinct from other conspecific populations? 2) Does the population occupy unusual or distinctive habitat? 3) Does the population show evidence of unusual or distinctive adaptation to its environment? Several types of information are useful in addressing these questions. Again, the strengths and limitations of each should be kept in mind in making the evaluation. Phenotypic/life-history traits such as size, fecundity, and age and time of spawning may reflect local adaptations of evolutionary importance, but interpretation of these traits is complicated by their sensitivity to environmental conditions. Data from protein electrophoresis or DNA analyses provide valuable insight into theprocessofgenetic differentiation among populations but little direct information regarding the extent of adaptive genetic differences. Habitat differences suggest the possibility for local adaptations but do not prove that such adaptations exist. The framework suggested here provides a focal point for accomplishing the majorgoal of the Act-to conserve the genetic diversity of species and the ecosystems they inhabit. At the same time, it allows discretion in the listing of populations by requiring that they represent units of real evolutionary significance to the species. Further, this framework provides a means of addressing several issues of particular concern for Pacific salmon, including anadromous/nonanadromous population segments, differences in run-timing, groups of populations, introduced populations, and the role of hatchery fish

    Coming to an Understanding: Mainstream Pupils' Perceptions of Mental Health Problems

    Get PDF
    With the introduction of the UK Government’s inclusive ideology in the late 20th century, increased pressure was put on schools serving adolescent psychiatric units to support their pupils to return to mainstream education. However, there is a perception that a factor that makes the transition process difficult is the attitude of mainstream pupils towards their peers with mental health problems. The purpose of this research was to explore mainstream pupils’ perceptions of mental health problems and the extent to which their understandings might lead to stigmatising attitudes. A theoretical perspective encompassing the ideas of social constructionism, interpretavism and symbolic interactionism, combined with a linguistic based approach, underpinned the development of an empathetic methodological approach to researching sensitive topics with adolescents. The research involved collecting data using a sequence of questionnaires, individual interviews and group interviews with pupils in three secondary schools within socially diverse communities. The questionnaire was presented in comic booklet form and included such techniques as cartoons, vignettes, and adapted familiarity and social distance scales. This dissertation reveals ways in which young people create their personal constructs around mental health and the complexities of the nature of stigma. It also highlights the implications that these findings have for staff and pupils involved in the transition process and for the development of practice in this field

    Reengineering Biomedical Engineering Curricula: A New Product Development Approach

    Get PDF
    Product development engineers in medical industries have created design control procedures to ensure high quality designs that are as error-free as possible. The reason is simple; companies must adhere to certain engineering and manufacturing best practices in order to obtain certification of their devices for sale in the US and abroad. We describe here an ongoing effort to apply these industrial best practices to the design and implementation of a novel sequence of undergraduate biomedical computing courses within the Department of Bio-medical Engineering at Marquette University (Milwaukee, Wisconsin). We have tightly integrated our industrial advisory board into this design and development effort. The board has contributed to significantly to the orderly generation of curricular requirements, the development of course implementation designs and the evaluation of these designs per requirements

    Reliable effective number of breeders/adult census size ratios in seasonal-breeding species: Opportunity for integrative demographic inferences based on capture-mark-recapture data and multilocus genotypes

    Get PDF
    The ratio of the effective number of breeders (Nb) to the adult census size (Na), Nb/Na, approximates the departure from the standard capacity of a population to maintain genetic diversity in one reproductive season. This information is relevant for assessing population status, understanding evolutionary processes operating at local scales, and unraveling how life-history traits affect these processes. However, our knowledge on Nb/Na ratios in nature is limited because estimation of both parameters is challenging. The sibship frequency (SF) method is adequate for reliable Nb estimation because it is based on sibship and parentage reconstruction from genetic marker data, thereby providing demographic inferences that can be compared with field-based information. In addition, capture–mark–recapture (CMR) robust design methods are well suited for Na estimation in seasonal-breeding species. We used tadpole genotypes of three pond-breeding amphibian species (Epidalea calamita, Hyla molleri, and Pelophylax perezi, n = 73–96 single-cohort tadpoles/species genotyped at 15–17 microsatellite loci) and candidate parental genotypes (n = 94–300 adults/species) to estimate Nb by the SF method. To assess the reliability of Nb estimates, we compared sibship and parentage inferences with field-based information and checked for the convergence of results in replicated subsampled analyses. Finally, we used CMR data from a 6-year monitoring program to estimate annual Na in the three species and calculate the Nb/Na ratio. Reliable ratios were obtained for E. calamita (Nb/Na = 0.18–0.28) and P. perezi (0.5), but in H. molleri, Na could not be estimated and genetic information proved insufficient for reliable Nb estimation. Integrative demographic studies taking full advantage of SF and CMR methods can provide accurate estimates of the Nb/Na ratio in seasonal-breeding species. Importantly, the SF method provides results that can be readily evaluated for reliability. This represents a good opportunity for obtaining robust demographic inferences with wide applications for evolutionary and conservation research

    Harvest-induced evolution and effective population size

    Get PDF
    Much has been written about fishery-induced evolution (FIE) in exploited species, but relatively little attention has been paid to the consequences for one of the most important parameters in evolutionary biology-effective population size (N-e). We use a combination of simulations of Atlantic cod populations experiencing harvest, artificial manipulation of cod life tables, and analytical methods to explore how adding harvest to natural mortality affects N-e, census size (N), and the ratio N-e/N. We show that harvest-mediated reductions in N-e are due entirely to reductions in recruitment, because increasing adult mortality actually increases the N-e/N ratio. This means that proportional reductions in abundance caused by harvest represent an upper limit to the proportional reductions in N-e, and that in some cases N-e can even increase with increased harvest. This result is a quite general consequence of increased adult mortality and does not depend on harvest selectivity or FIE, although both of these influence the results in a quantitative way. In scenarios that allowed evolution, N-e recovered quickly after harvest ended and remained higher than in the preharvest population for well over a century, which indicates that evolution can help provide a long-term buffer against loss of genetic variability.Peer reviewe

    Natural recovery of genetic diversity by gene flow in reforested areas of the endemic Canary Island pine, Pinus canariensis

    Full text link
    The endemic pine, Pinus canariensis, forms one of the main forest ecosystems in the Canary Islands. In this archipelago, pine forest is a mosaic of natural stands (remnants of past forest overexploitation) and artificial stands planted from the 1940's. The genetic makeup of the artificially regenerated forest is of some concern. The use of reproductive material with uncontrolled origin or from a reduced number of parental trees may produce stands ill adapted to local conditions or unable to adapt in response to environmental change. The genetic diversity within a transect of reforested stands connecting two natural forest fragments has been studied with nuclear and chloroplast microsatellites. Little genetic differentiation and similar levels of genetic diversity to the surrounding natural stands were found for nuclear markers. However, chloroplast microsatellites presented lower haplotype diversity in reforested stands, and this may be a consequence of the lower effective population size of the chloroplast genome, meaning chloroplast markers have a higher sensitivity to bottlenecks. Understory natural regeneration within the reforestation was also analysed to study gene flow from natural forest into artificial stands. Estimates of immigration rate into artificially regenerated forest were high (0.68-0.75), producing a significant increase of genetic diversity (both in chloroplast and nuclear microsatellites), which indicates the capacity for genetic recovery for P. canariensis reforestations surrounded by larger natural stands

    Linkage mapping reveals strong chiasma interference in Sockeye salmon: Implications for interpreting genomic data

    Get PDF
    Meiotic recombination is fundamental for generating new genetic variation and for securing proper disjunction. Further, recombination plays an essential role during the rediploidization process of polyploid-origin genomes because crossovers between pairs of homeologous chromosomes retain duplicated regions. A better understanding of how recombination affects genome evolution is crucial for interpreting genomic data; unfortunately, current knowledge mainly originates from a few model species. Salmonid fishes provide a valuable system for studying the effects of recombination in nonmodel species. Salmonid females generally produce thousands of embryos, providing large families for conducting inheritance studies. Further, salmonid genomes are currently rediploidizing after a whole genome duplication and can serve as models for studying the role of homeologous crossovers on genome evolution. Here, we present a detailed interrogation of recombination patterns in sockeye salmon (Oncorhynchus nerka). First, we use RAD sequencing of haploid and diploid gynogenetic families to construct a dense linkage map that includes paralogous loci and location of centromeres. We find a nonrandom distribution of paralogs that mainly cluster in extended regions distally located on 11 different chromosomes, consistent with ongoing homeologous recombination in these regions. We also estimate the strength of interference across each chromosome; results reveal strong interference and crossovers are mostly limited to one per arm. Interference was further shown to continue across centromeres, but metacentric chromosomes generally had at least one crossover on each arm. We discuss the relevance of these findings for both mapping and population genomic studies

    Small effective population sizes in two planktonic freshwater copepod species (Eudiaptomus) with apparently large census sizes

    Get PDF
    In small planktonic organisms, large census sizes (Nc) suggest large effective population sizes (Ne), but reliable estimates are rare. Here, we present Ne/Nc ratios for two freshwater copepod species (Eudiaptomus sp.) using temporal samples of multilocus microsatellite genotypes and a pseudo-likelihood approach. Ne/Nc ratios were very small in both Eudiaptomus species (10−7–10−8). Although we hypothesized that the species producing resting eggs (E. graciloides) had a larger Ne than the other (E. gracilis), estimates were not statistically different (E. graciloides: Ne = 672.7, CI: 276–1949; E. gracilis: Ne = 1027.4, CI: 449–2495), suggesting that the propagule bank of E. graciloides had no detectable influence on Ne
    corecore