1,913 research outputs found
The role of chaotic resonances in the solar system
Our understanding of the Solar System has been revolutionized over the past
decade by the finding that the orbits of the planets are inherently chaotic. In
extreme cases, chaotic motions can change the relative positions of the planets
around stars, and even eject a planet from a system. Moreover, the spin axis of
a planet-Earth's spin axis regulates our seasons-may evolve chaotically, with
adverse effects on the climates of otherwise biologically interesting planets.
Some of the recently discovered extrasolar planetary systems contain multiple
planets, and it is likely that some of these are chaotic as well.Comment: 28 pages, 9 figure
Common carp (Cyprinus carpio L.) alters its feeding niche in response to changing food resources: direct observations in simulated ponds
We used customized fish tanks as model fish ponds to observe grazing, swimming, and conspecific social behavior of common carp (Cyprinus carpio) under variable food-resource conditions to assess alterations in feeding niche. Different food and feeding situations were created by using only pond water or pond water plus pond bottom sediment or pond water plus pond bottom sediment and artificial feeding. All tanks were fertilized twice, prior to stocking and 2 weeks later after starting the experiment to stimulate natural food production. Common carp preferred artificial feed over benthic macroinvertebrates, followed by zooplankton. Common carp did not prefer any group of phytoplankton in any treatment. Common carp was mainly benthic in habitat choice, feeding on benthic macroinvertebrates when only plankton and benthic macroinvertebrates were available in the system. In the absence of benthic macroinvertebrates, their feeding niche shifted from near the bottom of the tanks to the water column where they spent 85% of the total time and fed principally on zooplankton. Common carp readily switched to artificial feed when available, which led to better growth. Common carp preferred to graze individually. Behavioral observations of common carp in tanks yielded new information that assists our understanding of their ecological niche. This knowledge could be potentially used to further the development of common carp aquaculture
Wall-Crossing in Coupled 2d-4d Systems
We introduce a new wall-crossing formula which combines and generalizes the
Cecotti-Vafa and Kontsevich-Soibelman formulas for supersymmetric 2d and 4d
systems respectively. This 2d-4d wall-crossing formula governs the
wall-crossing of BPS states in an N=2 supersymmetric 4d gauge theory coupled to
a supersymmetric surface defect. When the theory and defect are compactified on
a circle, we get a 3d theory with a supersymmetric line operator, corresponding
to a hyperholomorphic connection on a vector bundle over a hyperkahler space.
The 2d-4d wall-crossing formula can be interpreted as a smoothness condition
for this hyperholomorphic connection. We explain how the 2d-4d BPS spectrum can
be determined for 4d theories of class S, that is, for those theories obtained
by compactifying the six-dimensional (0,2) theory with a partial topological
twist on a punctured Riemann surface C. For such theories there are canonical
surface defects. We illustrate with several examples in the case of A_1
theories of class S. Finally, we indicate how our results can be used to
produce solutions to the A_1 Hitchin equations on the Riemann surface C.Comment: 170 pages, 45 figure
The N-terminal intrinsically disordered domain of mgm101p is localized to the mitochondrial nucleoid.
The mitochondrial genome maintenance gene, MGM101, is essential for yeasts that depend on mitochondrial DNA replication. Previously, in Saccharomyces cerevisiae, it has been found that the carboxy-terminal two-thirds of Mgm101p has a functional core. Furthermore, there is a high level of amino acid sequence conservation in this region from widely diverse species. By contrast, the amino-terminal region, that is also essential for function, does not have recognizable conservation. Using a bioinformatic approach we find that the functional core from yeast and a corresponding region of Mgm101p from the coral Acropora millepora have an ordered structure, while the N-terminal domains of sequences from yeast and coral are predicted to be disordered. To examine whether ordered and disordered domains of Mgm101p have specific or general functions we made chimeric proteins from yeast and coral by swapping the two regions. We find, by an in vivo assay in S.cerevisiae, that the ordered domain of A.millepora can functionally replace the yeast core region but the disordered domain of the coral protein cannot substitute for its yeast counterpart. Mgm101p is found in the mitochondrial nucleoid along with enzymes and proteins involved in mtDNA replication. By attaching green fluorescent protein to the N-terminal disordered domain of yeast Mgm101p we find that GFP is still directed to the mitochondrial nucleoid where full-length Mgm101p-GFP is targeted
Increasing condom use in heterosexual men: development of a theory-based interactive digital intervention
Increasing condom use to prevent sexually transmitted infections is a key public health goal. Interventions are more likely to be effective if they are theory- and evidence-based. The Behaviour Change Wheel (BCW) provides a framework for intervention development. To provide an example of how the BCW was used to develop an intervention to increase condom use in heterosexual men (the MenSS website), the steps of the BCW intervention development process were followed, incorporating evidence from the research literature and views of experts and the target population. Capability (e.g. knowledge) and motivation (e.g. beliefs about pleasure) were identified as important targets of the intervention. We devised ways to address each intervention target, including selecting interactive features and behaviour change techniques. The BCW provides a useful framework for integrating sources of evidence to inform intervention content and deciding which influences on behaviour to target
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926–2016
Antarctic krill (Euphausia superba) and salps are major macroplankton contributors to Southern
Ocean food webs and krill are also fished commercially. Managing this fishery sustainably, against a backdrop of
rapid regional climate change, requires information on distribution and time trends. Many data on the abundance
of both taxa have been obtained from net sampling surveys since 1926, but much of this is stored in national
archives, sometimes only in notebooks. In order to make these important data accessible we have collated available
abundance data (numerical density, no.
Recommended from our members
Evaluating methane inventories by isotopic analysis in the London region
A thorough understanding of methane sources is necessary to accomplish methane reduction targets. Urban environments, where a large variety of methane sources coexist, are one of the most complex areas to investigate. Methane sources are characterised by specific δ13C-CH4 signatures, so high precision stable isotope analysis of atmospheric methane can be used to give a better understanding of urban sources and their partition in a source mix. Diurnal measurements of methane and carbon dioxide mole fraction, and isotopic values at King’s College London, enabled assessment of the isotopic signal of the source mix in central London. Surveys with a mobile measurement system in the London region were also carried out for detection of methane plumes at near ground level, in order to evaluate the spatial allocation of sources suggested by the inventories. The measured isotopic signal in central London (−45.7 ±0.5‰) was more than 2‰ higher than the isotopic value calculated using emission inventories and updated δ13C-CH4 signatures. Besides, during the mobile surveys, many gas leaks were identified that are not included in the inventories. This suggests that a revision of the source distribution given by the emission inventories is needed
Determination of the mass of the W boson
Previous studies of the physics potential of LEP2 indicated that with the design luminosity of 500 inverse picobarn one may get a direct measurement of the mass of the W-boson with a precision in the range 30 - 50 MeV. This report presents an updated evaluation of the estimated error on the mass of the W-boson based on recent simulation work and improved theoretical input. The most efficient experimental methods which will be used are also described
A Measurement of Rb using a Double Tagging Method
The fraction of Z to bbbar events in hadronic Z decays has been measured by
the OPAL experiment using the data collected at LEP between 1992 and 1995. The
Z to bbbar decays were tagged using displaced secondary vertices, and high
momentum electrons and muons. Systematic uncertainties were reduced by
measuring the b-tagging efficiency using a double tagging technique. Efficiency
correlations between opposite hemispheres of an event are small, and are well
understood through comparisons between real and simulated data samples. A value
of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is
statistical and the second systematic. The uncertainty on Rc, the fraction of Z
to ccbar events in hadronic Z decays, is not included in the errors. The
dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the
deviation of Rc from the value 0.172 predicted by the Standard Model. The
result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the
Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European
Physical Journal
- …
