92,171 research outputs found
Reverse Engineering from Assembler to Formal Specifications via Program Transformations
The FermaT transformation system, based on research carried out over the last
sixteen years at Durham University, De Montfort University and Software
Migrations Ltd., is an industrial-strength formal transformation engine with
many applications in program comprehension and language migration. This paper
is a case study which uses automated plus manually-directed transformations and
abstractions to convert an IBM 370 Assembler code program into a very
high-level abstract specification.Comment: 10 page
SCUBA polarisation observations of the magnetic fields in the prestellar cores L1498 and L1517B
We have mapped linearly polarized dust emission from the prestellar cores
L1498 and L1517B with the James Clerk Maxwell Telescope (JCMT) using the
Submillimetre Common User Bolometer Array (SCUBA) and its polarimeter SCUBAPOL
at a wavelength of 850um. We use these measurements to determine the
plane-of-sky magnetic field orientation in the cores. In L1498 we see a
magnetic field across the peak of the core that lies at an offset of 19 degrees
to the short axis of the core. This is similar to the offsets seen in previous
observations of prestellar cores. To the southeast of the peak, in the
filamentary tail of the core, we see that the magnetic field has rotated to lie
almost parallel to the long axis of the filament. We hypothesise that the field
in the core may have decoupled from the field in the filament that connects the
core to the rest of the cloud. We use the Chandrasekhar-Fermi (CF) method to
measure the plane-of-sky field strength in the core of L1498 to be 10 +/- 7 uG.
In L1517B we see a more gradual turn in the field direction from the northern
part of the core to the south. This appears to follow a twist in the filament
in which the core is buried, with the field staying at a roughly constant 25
degree offset to the short axis of the filament, also consistent with previous
observations of prestellar cores. We again use the CF method and calculate the
magnetic field strength in L1517B also to be 30 +/- 10 uG. Both cores appear to
be roughly virialised. Comparison with our previous work on somewhat denser
cores shows that, for the denser cores, thermal and non-thermal (including
magnetic) support are approximately equal, while for the lower density cores
studied here, thermal support dominates.Comment: 6 pages, 2 figures; accepted for publication by MNRA
The Bioeconomic Implications of A Bycatch Reduction Device as a Stock Conservation Management Measure
The proposed regulation to reduce bycatch and discarding of finfish in the southeastern region is a gear modification that excludes finfish from shrimp trawls. This regulation is analyzed using a simple theoretical model of a multispecies fishery whose bycatch is harvested in a directed fishery consisting of commercial and recreational fishermen. The costless reduction in bycatch fishing mortality imposed on the multispecies fishery does not result in an increased stock size for the bycatch fish species or a substantial increase in its level of harvest. Instead, the fish stock is reallocated from the multispecies fishery to the fishery directed at the bycatch species causing fishing effort to expand in the bycatch species fishery that drives the stock size down to the previously existing equilibrium level. Recreational harvest and effort levels remain unchanged since the model is linear in effort and the commercial fishery is given access to the fishery first.Bycatch, policy analysis, bioeconomic model, Environmental Economics and Policy, Resource /Energy Economics and Policy,
Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 2
The application of tantalum capacitors in the Viking Lander includes dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function of extended periods of ripple current, and the existence of any memory characteristics are presented
An ultra scale-down analysis of the recovery by dead-end centrifugation of human cells for therapy.
An ultra scale-down method is described to determine the response of cells to recovery by dead-end (batch) centrifugation under commercially defined manufacturing conditions. The key variables studied are the cell suspension hold time prior to centrifugation, the relative centrifugal force (RCF), time of centrifugation, cell pellet resuspension velocities, and number of resuspension passes. The cell critical quality attributes studied are the cell membrane integrity and the presence of selected surface markers. Greater hold times and higher RCF values for longer spin times all led to the increased loss of cell membrane integrity. However, this loss was found to occur during intense cell resuspension rather than the preceding centrifugation stage. Controlled resuspension at low stress conditions below a possible critical stress point led to essentially complete cell recovery even at conditions of extreme centrifugation (e.g., RCF of 10000 g for 30 mins) and long (~2 h) holding times before centrifugation. The susceptibility to cell loss during resuspension under conditions of high stress depended on cell type and the age of cells before centrifugation and the level of matrix crosslinking within the cell pellet as determined by the presence of detachment enzymes or possibly the nature of the resuspension medium. Changes in cell surface markers were significant in some cases but to a lower extent than loss of cell membrane integrity. Biotechnol. Bioeng. 2015;112: 997-1011. © 2014 Wiley Periodicals, Inc
Oyster Bed Mapping in the Great Bay Estuary, 2012-2013
Six major oyster beds (reefs) in New Hampshire are mapped periodically to assess wild oyster populations in the Great Bay Estuary. Data on the spatial extent of the beds are combined with density and other measures to estimate the abundances of live oysters. The first objective of the present project was to determine the spatial extent of these six oyster beds, and to compare the 2012/2013 data with previous mapping efforts. A second objective was twofold: to map the extent of live oyster bottom at selected recent oyster restoration sites, and to map areas where oyster beds have been known to occur historically but not recently. Towed underwater video methods, as used in previous oyster mapping efforts in New Hampshire, were used for this project. All recorded video was classified into three categories: ”reef” (\u3e20% shell cover and live oysters visible); ”sparse shell” (
Two of the natural beds (Nannie Island [2012: 32.4 ac] and Oyster River [2012: 1.6 ac]) had similar total bottom area coverage compared to most previous mapping efforts. Three beds (Adams Point [2012: 15.9 ac], Squamscott River [2012: 7.7 ac] and Woodman Point [2012: 15.4 ac]) had substantially greater area coverage compared to previous surveys. In all three cases, however, the increases were likely due to additional adjacent areas being surveyed. In contrast to the others, the Piscataqua River bed appears to have substantially decreased in bottom area coverage (2012: 7.0 ac) compared to previous surveys.
Selected oyster restoration sites were also video surveyed in 2013 to determine bottom area coverage that could be considered “reef” and therefore considered as part of the overall oyster resource in New Hampshire. Restoration sites in the Lamprey River, Oyster River (3 sites), and at Fox Point in Little Bay were imaged. Due to poor image quality, full bottom area coverage could not be determined for any of the sites. Nonetheless, substantial areas of at least “sparse shell” bottom, and live oysters in some areas were recorded at all sites. These restoration sites as well as additional sites are scheduled for video surveying and quantitative sampling in 2013.
The third focus of the project was to survey areas where oyster beds historically occurred. Of the four general areas surveyed, live oyster reefs were found in two areas: Lamprey River (0.9 ac) and mid-Great Bay (35.2 ac). In sum, these two areas represent a major addition to the known live oyster bottom in the state. Moreover, these findings strongly suggest that live oyster reefs may be in other areas where oysters have not been known to exist in recent years.
Overall, this project has added substantially to our knowledge of where live oysters occur in New Hampshire as well as the total bottom area coverage. A total of 120 acres of bottom area classified as “reef” was mapped. Additionally, the extent (perhaps 100 ac or more) of bottom area that had sparse shell but apparently few or no live oysters in mid-Great Bay bed and in the Nannie Island/Woodman Point area is important because these areas represent excellent oyster restoration opportunities. However, they will need to be mapped in more detail to sufficiently design future projects
Experimental Quantification of Nutrient Bioextracti on Potential of Oysters in Estuarine Waters of New Hampshire
This project was a short-term field experiment conducted in summer 2010 and designed to provide preliminary data on the bioextraction (removal) of carbon (C) and nitrogen (N) for two different size classes (both \u3c76mm shell height) of eastern oysters (Crassostrea virginica) at six sites in the Great Bay estuarine system in New Hampshire. Sites were chosen to represent a range of ambient nutrient concentrations, water flow conditions, and location within the estuary. Two of the sites were at oyster aquaculture farms: Granite State Shellfish at the mouth of the Oyster River, and Little Bay Oyster Company near Fox Point in Little Bay. At each site, oysters were deployed in 10mm mesh polyethylene bags typically used on oyster farms in New England. Approximately one thousand “seed” size (10?15 mm shell height), or two hundred (200) 1?year old (30?40 mm shell height) oysters were placed into each bag. Two bags (one for each size class) were suspended 10?20 cm off the bottom attached to plastic coated wire cages at each site from August 9 until November 4, 2010. The oysters were inspected and the bags were cleaned each month to reduce fouling. There were no significant differences in final size among the six sites, indicating similar growth rates. Soft tissue %C and %N values, however, varied substantially and significantly (ANOVA, P\u3c0.05) among the sites. Tukey tests indicated significantly higher %C and %N at the Squamscott River (SQ) site, and significantly lower at the Little Bay Oyster (LBO) farm site, compared to the other sites. The ranges of mean soft tissue %C and %N were, respectively, 26.9 to 47.2 and 4.7 to 10.6. Because shell material was not analyzed in the present study, literature values for shell were combined with soft tissue data from the present study to arrive at total whole animal C and N content. Oysters with mean shell height of 35.7 mm contained 0.6 g of C and 0.01 g of N; oysters with mean shell height of 55.6 mm contained 3.1 g of C and 0.07 g of N. Preliminary calculations indicated that if 20 0 acres of bottom area were in full farm production, the annual N removal from the estuary from oyster harvest alone would be 12.56 tons. It is emphasized that the present study represents only the first step in characterizing the nutrient (focusing on N) bioextraction potential for oyster farming in New Hampshire
- …
