12,501 research outputs found
A scanning electron microscopy study of the macro-crystalline structure of 2-(2,4-dinitrobenzyl) pyridine
The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope
High-tip-speed, low-loading transonic fan stage. Part 3: Final report
Tests were conducted on a high-tip-speed, low-loading transonic fan stage to determine the performance and inlet flow distortion tolerance of the design. The fan was designed for high efficiency at a moderate pressure ratio by designing the hub section to operate at minimum loss when the tip operates with an oblique shock. The design objective was an efficiency of 86 percent at a pressure ratio of 1.5, a specific flow (flow per unit annulus area) of 42 lb/sec-sq. ft (205.1 kgm/sec-m sq), and a tip speed of 1600 ft/sec (488.6 m/sec). During testing, a peak efficiency of 84 percent was achieved at design speed and design specific flow. At the design speed and pressure ratio, the flow was 4 percent greater than design, efficiency was 81 percent, and a stall margin of 24 percent was obtained. The stall line was improved with hub radial distortion but was reduced when the stage was tested with tip radial and circumferential flow distortions. Blade-to-blade values of static pressures were measured over the rotor blade tips
Photon counting compressive depth mapping
We demonstrate a compressed sensing, photon counting lidar system based on
the single-pixel camera. Our technique recovers both depth and intensity maps
from a single under-sampled set of incoherent, linear projections of a scene of
interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional
reconstructions are required to image a three-dimensional scene. We demonstrate
intensity imaging and depth mapping at 256 x 256 pixel transverse resolution
with acquisition times as short as 3 seconds. We also show novelty filtering,
reconstructing only the difference between two instances of a scene. Finally,
we acquire 32 x 32 pixel real-time video for three-dimensional object tracking
at 14 frames-per-second.Comment: 16 pages, 8 figure
A tool for subjective and interactive visual data exploration
We present SIDE, a tool for Subjective and Interactive Visual Data Exploration, which lets users explore high dimensional data via subjectively informative 2D data visualizations. Many existing visual analytics tools are either restricted to specific problems and domains or they aim to find visualizations that align with user’s belief about the data. In contrast, our generic tool computes data visualizations that are surprising given a user’s current understanding of the data. The user’s belief state is represented as a set of projection tiles. Hence, this user-awareness offers users an efficient way to interactively explore yet-unknown features of complex high dimensional datasets
Application of holography to flow visualization within rotating compressor blade row
Two holographic interblade row flow visualization systems were designed to determine the three-dimensional shock patterns and velocity distributions within the rotating blade row of a transonic fan rotor, utilizing the techniques of pulsed laser transmission holography. Both single- and double-exposure bright field holograms and dark field scattered-light holograms were successfully recorded. Two plastic windows were installed in the rotor tip casing and outer casing forward of the rotor to view the rotor blade passage. The viewing angle allowed detailed investigation of the leading edge shocks and shocks in the midspan damper area; limited details of the trailing edge shocks also were visible. A technique was devised for interpreting the reconstructed holograms by constructing three dimensional models that allowed identification of the major shock systems. The models compared favorably with theoretical predictions and results of the overall and blade element data. Most of the holograms were made using the rapid double-pulse technique
Correlated Fast Ion Stopping in Magnetized Classical Plasma
The results of a theoretical investigation on the stopping power of ion pair
in a magnetized electron plasma are presented, with particular emphasis on the
two-ion correlation effects. The analysis is based on the assumptions that the
magnetic field is classically strong (, where
, and are respectively the electron de Broglie
wavelength, Larmor radius and Debye length) and that the velocity of the two
ions is identical and fixed. The stopping power and % vicinage function in a
plasma are computed by retaining two-ion correlation effects and is compared
with the results of the individual-projectile approximation.Comment: LaTeX, 7 pages, 4 figure
Advanced Mid-Water Tools for 4D Marine Data Fusion and Visualization
Mapping and charting of the seafloor underwent a revolution approximately 20 years ago with the introduction of multibeam sonars -- sonars that provided complete, high-resolution coverage of the seafloor rather than sparse measurements. The initial focus of these sonar systems was the charting of depths in support of safety of navigation and offshore exploration; more recently innovations in processing software have led to approaches to characterize seafloor type and for mapping seafloor habitat in support of fisheries research. In recent years, a new generation of multibeam sonars has been developed that, for the first time, have the ability to map the water column along with the seafloor. This ability will potentially allow multibeam sonars to address a number of critical ocean problems including the direct mapping of fish and marine mammals, the location of mid-water targets and, if water column properties are appropriate, a wide range of physical oceanographic processes. This potential relies on suitable software to make use of all of the new available data. Currently, the users of these sonars have a limited view of the mid-water data in real-time and limited capacity to store it, replay it, or run further analysis. The data also needs to be integrated with other sensor assets such as bathymetry, backscatter, sub-bottom, seafloor characterizations and other assets so that a “complete” picture of the marine environment under analysis can be realized. Software tools developed for this type of data integration should support a wide range of sonars with a unified format for the wide variety of mid-water sonar types. This paper describes the evolution and result of an effort to create a software tool that meets these needs, and details case studies using the new tools in the areas of fisheries research, static target search, wreck surveys and physical oceanographic processes
Small axial compressor technology, volume 1
A scaled single-stage, highly-loaded, axial-flow transonic compressor was tested at speeds from 70 to 110% design equivalent speed to evaluate the effects of scaling compromises and the individual and combined effects of rotor tip running clearance and rotor shroud casing treatment on the overall and blade element performance. At design speed and 1% tip clearance the stage demonstrated an efficiency of 83.2% at 96.4% design flow and a pressure ratio of 1.865. Casing treatment increased design speed surge margin 2.0 points to 12.8%. Overall performance was essentially unchanged. An increase in rotor running clearance to 2.2%, with smooth casing, reduced design speed peak efficiency 5.7 points, flow by 7.4%, pressure ratio to 1.740, and surge margin to 5.4%. Reinstalling casing treatment regained 3.5 points in design speed peak efficiency, 4.7% flow, increased pressure ratio to 1.800 and surge margin to 8.7%
- …
