410 research outputs found
USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling
Protein kinase ALK3/BMPR1A mediates bone morphogenetic protein (BMP) signalling through phosphorylation and activation of SMADs 1/5/8. SMAD6, a transcriptional target of BMP, negatively regulates the BMP pathway by recruiting E3 ubiquitin ligases and targeting ALK3 for ubiquitin-mediated degradation. Here, we identify a deubiquitylating enzyme USP15 as an interactor of SMAD6 and ALK3. We show that USP15 enhances BMP-induced phosphorylation of SMAD1 by interacting with and deubiquitylating ALK3. RNAi-mediated depletion of USP15 increases ALK3 K48-linked polyubiquitylation, and reduces both BMP-induced SMAD1 phosphorylation and transcription of BMP target genes. We also show that loss of USP15 expression from mouse myoblast cells inhibits BMP-induced osteoblast differentiation. Furthermore, USP15 modulates BMP-induced phosphorylation of SMAD1 and transcription during Xenopus embryogenesis
Can financial ratios predict the Malaysian stock return?
The purpose of this paper is to use the dividend yield (DY), earning to price ratio (EP), and capital gain (CG) to predict the Malaysia stock market return from 1995 to 2005 by using the time series regression. We utilize both the univariate and multivariate Ordinary Least Square (OLS) regression analysis to test the future monthly and quarterly stock return. We apply the unit root test to test the stationary of the time series, and various diagnostic tests to check for the robustness of model. We find that the financial ratios and the capital gain have a positive relationship with expected monthly and quarterly stock return. Although not all the model show significant relationship between the financial ratios and stock return, it is proven that the financial ratios and capital gain have some predictive power to predict the Malaysia future stock return. From the overall findings, we can suggest that both the univariatre DY with dummy variable and multivariate DY model with dummy variable are the good models to predict the Malaysia monthly and quarterly future nominal stock return
Age, sex, endurance capacity, and chronic heart failure affect central and peripheral factors of oxygen uptake measured by non-invasive and continuous technologies: support of pioneer work using invasive or non-continuous measures
IntroductionIt is known that maximum oxygen uptake depends on age, sex, endurance capacity, and chronic heart failure. However, due to the required invasive or often applied non-continuous approaches, less is known on underlying central and peripheral factors. Thus, this study aimed to investigate the effects of age, sex, endurance capacity, and chronic heart failure on non-invasively and continuously measured central and peripheral factors of oxygen uptake.Methods15 male children (11 ± 1 years), 15 male (24 ± 3 years) and 14 female recreationally active adults (23 ± 2 years), 12 male highly trained endurance athletes (24 ± 3 years), and 10 male elders (59 ± 6 years) and 10 chronic heart failure patients (62 ± 7 years) were tested during a cardiopulmonary exercise test on a cycling ergometer until exhaustion for: blood pressure, heart rate, stroke volume, cardiac output, cardiac power output, vastus lateralis muscle oxygen saturation, and (calculated) arterio-venous oxygen difference. For the non-invasive and continuous measurement of stroke volume and muscle oxygen saturation, bioreactance analysis and near-infrared spectroscopy were used, respectively. A two-factor repeated measure ANOVA and partial eta-squared effect sizes (ηp2) were applied for statistical analyses at rest, 80, and 100% of oxygen uptake.ResultsFor the age effect, there were statistically significant group differences for all factors (p ≤ .033; ηp2≥.169). Concerning sex, there were group differences for all factors (p ≤ .010; ηp2≥.223), except diastolic blood pressure and heart rate (p ≥ .698; ηp2≤.006). For the effect of endurance capacity, there were no group differences for any of the factors (p ≥ .065; ηp2≤.129). Regarding chronic heart failure, there were group differences for the heart rate and arterio-venous oxygen difference (p ≤ .037; ηp2≥.220).DiscussionAge, sex, endurance capacity, and chronic heart failure affect central and peripheral factors of oxygen uptake measured by non-invasive and continuous technologies. Since most of our findings support pioneer work using invasive or non-continuous measures, the validity of our applied technologies is indirectly confirmed. Our outcomes allow direct comparison between different groups serving as reference data and framework for subsequent studies in sport science and medicine aiming to optimise diagnostics and interventions in athletes and patients
Evaluation of the Physicochemical, Spectral, Thermal and Behavioral Properties of Sodium Selenate: Influence of the Energy of Consciousness Healing Treatment
Sodium selenate is an inorganic nutraceutical/pharmaceutical compound used for the prevention and treatment of several diseases. The current research article was aimed to explore the effect of The Trivedi Effect® - Energy of Consciousness Healing Treatment on the physicochemical, spectral, thermal, and behavioral properties of sodium selenate using PXRD, PSD, FT-IR, UV-vis, TGA, and DSC analysis. Sodium selenate was divided into two parts – one part was control, while another part was The Trivedi Effect® Treated sample which was received The Trivedi Effect® remotely by twenty renowned Biofield Energy Healers. A significant alteration of the crystallite size of the treated sample was observed in the range of -42.87% to 39.99% compared to the control sample. Consequently, the average crystallite size was significantly enhanced in the treated sample by 5.07% compared with the control sample. The particle size distribution of the treated sample at d10, d50, and d90 values were significantly reduced by 7.68%, 9.49%, and 4.08%, respectively compared with the control sample. Subsequently, the surface area of the treated sample was significantly increased by 8.16% compared with the control sample. The control and treated FT-IR spectra exhibited the sharp and strong vibration bands at 889 cm-1 and 888 cm-1, respectively for Se=O stretching. The control and treated samples displayed the maximum absorbance at 204.9 nm and 204.5 nm, respectively. A significant reduction of total weight loss by 6.11% in the treated sample indicated the improvement of the thermal stability of the treated sample compared with the control sample. The vaporization temperature of the treated sample (95.68°C) was higher with a significant reduced latent heat of vaporization by 60.80% compared to the control sample (95.29°C). Thus, The Trivedi Effect® - Energy of Consciousness Healing Treatment might produce a new polymorphic form of sodium selenate which would be more soluble, dissolution rate, bioavailable, and thermally stable compared with the untreated sample. The Trivedi Effect® treated sodium selenate would be very suitable to design improved nutraceutical and pharmaceutical formulations that might provide better therapeutic response against several diseases such as stress, aging, inflammatory diseases, immunological disorders, infectious diseases, cancer, etc.
Source:
https://www.trivedieffect.com/science/evaluation-of-the-physicochemical-spectral-thermal-and-behavioral-properties-of-sodium-selenate-influence-of-the-energy-of-consciousness-healing-treatment
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=398&doi=10.11648/j.ajqcms.20170101.1
LC-MS and NMR Based Structural Characterization and Isotopic Abundance Ratio Analysis of Magnesium Gluconate Treated with the Consciousness Energy Healing
Magnesium gluconate is widely used pharmaceutical/nutraceutical compound for the prevention and treatment of magnesium deficiency diseases. The present study was designed to explore the effect of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on magnesium gluconate for the change in the structural properties and isotopic abundance ratio (PM+1/PM and PM+2/PM) using LC-MS and NMR spectroscopy. Magnesium gluconate was divided into two parts – one part was control, and another part was treated with The Trivedi Effect® - Energy of Consciousness Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as The Trivedi Effect® treated sample. The LC-MS analysis of both the control and Biofield Energy Treated samples indicated the presence of mass of the protonated magnesium gluconate at m/z 415 at the retention time of 1.52 min and fragmentation pattern of both samples were almost identical. The relative peak intensities of the fragment ions were significantly altered in the treated sample compared to the control sample. The proton and carbon signals for CH, CH2 and CO groups in the proton and carbon NMR spectra of the control and treated samples were found same. The percentage change in the isotopic abundance ratio of PM+1/PM (2H/1H or 13C/12C or 17O/16O or 25Mg/24Mg) was significantly decreased in the treated sample by 48.87% compared to the control sample. Subsequently, the isotopic abundance ratio of PM+2/PM (18O/16O or 26Mg/24Mg) in the treated sample was significantly increased by 29.18% compared with the control sample. In summary, 13C, 2H, 17O, and 25Mg contributions from (C12H23MgO14)+ to m/z 416; 18O and 26Mg contributions from (C12H23MgO14)+ to m/z 417 in the treated sample were significantly altered compared with the control sample. Thus, The Trivedi Effect® Treated magnesium gluconate might be helpful to design the novel potent enzyme inhibitors using its kinetic isotope effects. Consequently, The Trivedi Effect® Treated magnesium gluconate would be valuable for designing better pharmaceutical and/or nutraceutical formulations through its altered physicochemical and thermal properties, which might be providing better therapeutic response against various diseases such as diabetes mellitus, allergy, aging, inflammatory diseases, immunological disorders, and other chronic infections.
https://www.trivedieffect.com/science/lc-ms-and-nmr-based-structural-characterization-and-isotopic-abundance-ratio-analysis-of-magnesium-gluconate-treated-with-the-consciousness-energy-healing
http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=216&paperId=1002165
Self-Decoration of PtNi Alloy Nanoparticles on Multiwalled Carbon Nanotubes for Highly Efficient Methanol Electro-Oxidation
2D Crystals Significantly Enhance the Performance of a Working Fuel Cell
2D atomic crystals such as single layer graphene (SLG) and hexagonal boron nitride (hBN) have been shown to be “unexpectedly permeable” to hydrogen ions under ambient conditions with the proton conductivity rising exponentially with temperature. Here, the first successful addition of SLG made by a chemical vapor deposition (CVD) method is shown to an operational direct methanol fuel cell significantly enhancing the performance of the cell once the temperature is raised above 60 °C, the temperature at which the proton conductivity of SLG is higher than the Nafion membrane on which it is mounted. Above this temperature, the resistance to proton transport of the system is not affected by the graphene but the barrier properties of graphene inhibit methanol crossover. The performance of the fuel cell is shown to increase linearly with coverage of SLG above this temperature. Results show that the maximum power density is increased at 70 °C by 45% in comparison to the standard membrane electrode assembly without graphene. In addition, a membrane with CVD hBN shows enhanced performance across the entire temperature range due to better proton conductivity at lower temperatures
Determination of Specific Electrocatalytic Sites in the Oxidation of Small Molecules on Crystalline Metal Surfaces
The identification of active sites in electrocatalytic reactions is part of the elucidation of mechanisms of catalyzed reactions on solid surfaces. However, this is not an easy task, even for apparently simple reactions, as we sometimes think the oxidation of adsorbed CO is. For surfaces consisting of non-equivalent sites, the recognition of specific active sites must consider the influence that facets, as is the steps/defect on the surface of the catalyst, cause in its neighbors; one has to consider the electrochemical environment under which the “active sites” lie on the surface, meaning that defects/steps on the surface do not partake in chemistry by themselves. In this paper, we outline the recent efforts in understanding the close relationships between site-specific and the overall rate and/or selectivity of electrocatalytic reactions. We analyze hydrogen adsorption/desorption, and electro-oxidation of CO, methanol, and ammonia. The classical topic of asymmetric electrocatalysis on kinked surfaces is also addressed for glucose electro-oxidation. The article takes into account selected existing data combined with our original works.M.J.S.F. is grateful to PNPD/CAPES (Brazil). J.M.F. thanks the MCINN (FEDER, Spain) project-CTQ-2016-76221-P
Development of Nafion/Tin Oxide Composite MEA for DMFC Applications
International audienceNafion composite membranes containing either hydrated tin oxide (SnO<sub>2</sub>•nH<sub>2</sub>O) or sulfated tin oxide (S-SnO<sub>2</sub>) at 5 wt.% and 10 wt.% were prepared and characterized. The structural and electrochemical features of the samples were investigated using X-ray diffraction, electrochemical impedance spectroscopy, methanol crossover, and direct methanol fuel cell (DMFC) tests. Highest conductivity values were obtained by using S-SnO<sub>2</sub> as filler (0.094 Scm<sup>-1</sup> at T=110°C and RH=100%). The presence of the inorganic compound resulted in lower methanol crossover and improved DMFC performance with respect to a reference unfilled membrane. To improve the interface of the membrane electrode assembly (MEA), a layer of the composite electrolyte (i.e., the Nafion membrane containing 5 wt% S-SnO<sub>2</sub>) was brushed on the electrodes, obtaining a DMFC operating at 110°C with a power density (PD) of 100 mWcm<sup>-2</sup> which corresponds to a PD improvement of 52% with respect to the unfilled Nafion membrane
- …
