898 research outputs found

    Adjustment and private investment in Kenya

    Get PDF
    The authors use an accelerator model to assess the determinants of private investment and to analyze how adjustment policies affect those determinants. Their model emphasizes the effect of resource constraints on private investment behavior, including that arising from foreign exchange rationing. Econometric estimation of the investment model with Kenyan data for 1968-88 suggests that Kenya's failure to implement adjustment policies after the collapse of the coffee boom and the breakup of the East African common market reduced private investment sharply in the 1980s. The authors argue that inadequate fiscal adjustment was a key failure of policy. With direct competition between public and private sectors for limited financial resources, fiscal deficits preempted funds and restricted private investor's access to them. In addition, when cuts in government spending were undertaken to contain deficits, they fell disproportionately on capital expenditure, especially on physical infrastructure. Though real depreciation is found to have a direct negative impact on investment, the authors use simulations to show that it has a positive indirect effect on private investment in the medium term because such depreciation relaxes the foreign exchange constraint on imports. They conclude that efficient fiscal adjustment and liberalization of imports will be critical for the recovery of private investment in Kenya.Trade and Regional Integration,Economic Theory&Research,Economic Stabilization,Environmental Economics&Policies,Macroeconomic Management

    Meromorphic Solutions to a Differential--Difference Equation Describing Certain Self-Similar Potentials

    Full text link
    In this paper we prove the existence of meromorphic solutions to a nonlinear differential difference equation that describe certain self-similar potentials for the Schroedinger operator.Comment: 10 pages, LaTeX, uses additional package

    Initial value problem for cohomogeneity one gradient Ricci solitons

    Full text link
    Consider a smooth manifold MM. Let GG be a compact Lie group which acts on MM with cohomogeneity one. Let QQ be a singular orbit for this action. We study the gradient Ricci soliton equation \Hess(u)+\Ric(g)+\frac{\epsilon}{2}g=0 around QQ. We show that there always exists a solution on a tubular neighbourhood of QQ for any prescribed GG-invariant metric gQg_Q and shape operator LQL_Q, provided that the following technical assumption is satisfied: if P=G/KP=G/K is the principal orbit for this action, the KK-representations on the normal and tangent spaces to QQ have no common sub-representations. We also show that the initial data are not enough to ensure uniqueness of the solution, providing examples to explain this indeterminacy. This work generalises the papaer "The initial value problem for cohomogeneity one Einstein metrics" of 2000 by J.-H. Eschenburg and McKenzie Y. Wang to the gradient Ricci solitons case

    Elastodynamics of radially inhomogeneous spherically anisotropic elastic materials in the Stroh formalism

    Full text link
    A method is presented for solving elastodynamic problems in radially inhomogeneous elastic materials with spherical anisotropy, i.e.\ materials such that cijkl=cijkl(r)c_{ijkl}= c_{ijkl}(r) in a spherical coordinate system r,θ,ϕ{r,\theta,\phi}. The time harmonic displacement field u(r,θ,ϕ)\mathbf{u}(r,\theta ,\phi) is expanded in a separation of variables form with dependence on θ,ϕ\theta,\phi described by vector spherical harmonics with rr-dependent amplitudes. It is proved that such separation of variables solution is generally possible only if the spherical anisotropy is restricted to transverse isotropy with the principal axis in the radial direction, in which case the amplitudes are determined by a first-order ordinary differential system. Restricted forms of the displacement field, such as u(r,θ)\mathbf{u}(r,\theta), admit this type of separation of variables solutions for certain lower material symmetries. These results extend the Stroh formalism of elastodynamics in rectangular and cylindrical systems to spherical coordinates.Comment: 15 page

    Quantum geometrodynamics for black holes and wormholes

    Full text link
    The geometrodynamics of the spherical gravity with a selfgravitating thin dust shell as a source is constructed. The shell Hamiltonian constraint is derived and the corresponding Schroedinger equation is obtained. This equation appeared to be a finite differences equation. Its solutions are required to be analytic functions on the relevant Riemannian surface. The method of finding discrete spectra is suggested based on the analytic properties of the solutions. The large black hole approximation is considered and the discrete spectra for bound states of quantum black holes and wormholes are found. They depend on two quantum numbers and are, in fact, quasicontinuous.Comment: Latex, 32 pages, 5 fig

    An algorithm to obtain global solutions of the double confluent Heun equation

    Full text link
    A procedure is proposed to construct solutions of the double confluent Heun equation with a determinate behaviour at the singular points. The connection factors are expressed as quotients of Wronskians of the involved solutions. Asymptotic expansions are used in the computation of those Wronskians. The feasibility of the method is shown in an example, namely, the Schroedinger equation with a quasi-exactly-solvable potential

    Existence and Uniqueness of Tri-tronqu\'ee Solutions of the second Painlev\'e hierarchy

    Full text link
    The first five classical Painlev\'e equations are known to have solutions described by divergent asymptotic power series near infinity. Here we prove that such solutions also exist for the infinite hierarchy of equations associated with the second Painlev\'e equation. Moreover we prove that these are unique in certain sectors near infinity.Comment: 13 pages, Late

    Chaotic hysteresis in an adiabatically oscillating double well

    Full text link
    We consider the motion of a damped particle in a potential oscillating slowly between a simple and a double well. The system displays hysteresis effects which can be of periodic or chaotic type. We explain this behaviour by computing an analytic expression of a Poincar'e map.Comment: 4 pages RevTeX, 3 PS figs, uses psfig.sty. Submitted to Phys. Rev. Letters. PS file also available at http://dpwww.epfl.ch/instituts/ipt/berglund.htm

    Autoresonance in a Dissipative System

    Full text link
    We study the autoresonant solution of Duffing's equation in the presence of dissipation. This solution is proved to be an attracting set. We evaluate the maximal amplitude of the autoresonant solution and the time of transition from autoresonant growth of the amplitude to the mode of fast oscillations. Analytical results are illustrated by numerical simulations.Comment: 22 pages, 3 figure

    Nonlinear PDEs for gap probabilities in random matrices and KP theory

    Get PDF
    Airy and Pearcey-like kernels and generalizations arising in random matrix theory are expressed as double integrals of ratios of exponentials, possibly multiplied with a rational function. In this work it is shown that such kernels are intimately related to wave functions for polynomial (Gel'fand-Dickey reductions) or rational reductions of the KP-hierarchy; their Fredholm determinant also satisfies linear PDEs (Virasoro constraints), yielding, in a systematic way, non-linear PDEs for the Fredholm determinant of such kernels. Examples include Fredholm determinants giving the gap probability of some infinite-dimensional diffusions, like the Airy process, with or without outliers, and the Pearcey process, with or without inliers.Comment: Minor revision: accepted for publication on Physica
    corecore