14,939 research outputs found
Evaluation of alternative solvents in common amide coupling reactions : replacement of dichloromethane and N,N-dimethylformamide
A range of alternative solvents have been evaluated within amidation reactions employing common coupling reagents with a view to identifying suitable replacements for dichloromethane and N,N-dimethylformamid
Performance Evaluation of Inverted Tee (IT) Bridge System
The Inverted Tee (IT) girder bridge system was originally developed in 1996 by the University of Nebraska–Lincoln (UNL) researchers and Nebraska Department of Transportation (NDOT) engineers. This bridge system currently accounts for over 110 bridges in Nebraska used for both state highways and local county roads. Extensive longitudinal and transverse deck cracking have been observed and noted in numerous bridge inspection reports. Since the IT girder bridge system is relatively new, limited data and knowledge exist on its structural performance and behavior. This study evaluates the IT girder bridge system by conducting twenty field observations as well as recording accelerometer, strain gauge, and LVDT time histories and lidar scans for a selected subset of these bridges and then a three-dimensional finite element analysis (FEA) was conducted. The field observations included visual inspection for damage and developing deck crack maps to identify a trend for the damage. System identification of the bridge deck and girders helped investigate the global and local structural responses, respectively. Operational modal analysis quantified the natural frequencies, damping ratios, and operational deflected shapes for the instrumented IT girder bridges. These results helped diagnose the reason for the longitudinal deck cracking. The IT girders respond non- uniformly for the first operational deflected shape and independently for higher modes. Two comparable bridges, namely one slab and one NU girder bridge, were instrumented to verify and demonstrate that the IT girder behavior is unique. An advanced geospatial analysis was conducted for the IT girder bridges to develop lidar depth maps of the deck and girders elevations. These depth maps help identify locations of potential water/chloride penetration and girders set at various elevations and/or where the deck thickness is non-uniform. Live load tests helped quantify the transverse dynamic behavior of the bridge girders. Quantifying the transverse dynamic behavior helped validate the source of longitudinal deck cracking in IT girder bridges, which was determined to be the differential deflection between adjacent IT girders. The FEA analysis was conducted to evaluate the live load moment and shear distribution factors and compare that to the predicted values calculated from the AASHTO Standard and LRFD bridge design specifications. The comparison indicated that the predicted distribution factors were conservative. Also, interviews with IT bridge producers and contractors were conducted to determine production and construction advantages and challenges of this bridge system
The Extreme Small Scales: Do Satellite Galaxies Trace Dark Matter?
We investigate the radial distribution of galaxies within their host dark
matter halos by modeling their small-scale clustering, as measured in the Sloan
Digital Sky Survey. Specifically, we model the Jiang et al. (2011) measurements
of the galaxy two-point correlation function down to very small projected
separations (10 < r < 400 kpc/h), in a wide range of luminosity threshold
samples (absolute r-band magnitudes of -18 up to -23). We use a halo occupation
distribution (HOD) framework with free parameters that specify both the number
and spatial distribution of galaxies within their host dark matter halos. We
assume that the first galaxy in each halo lives at the halo center and that
additional satellite galaxies follow a radial density profile similar to the
dark matter Navarro-Frenk-White (NFW) profile, except that the concentration
and inner slope are allowed to vary. We find that in low luminosity samples,
satellite galaxies have radial profiles that are consistent with NFW. M_r < -20
and brighter satellite galaxies have radial profiles with significantly steeper
inner slopes than NFW (we find inner logarithmic slopes ranging from -1.6 to
-2.1, as opposed to -1 for NFW). We define a useful metric of concentration,
M_(1/10), which is the fraction of satellite galaxies (or mass) that are
enclosed within one tenth of the virial radius of a halo. We find that M_(1/10)
for low luminosity satellite galaxies agrees with NFW, whereas for luminous
galaxies it is 2.5-4 times higher, demonstrating that these galaxies are
substantially more centrally concentrated within their dark matter halos than
the dark matter itself. Our results therefore suggest that the processes that
govern the spatial distribution of galaxies, once they have merged into larger
halos, must be luminosity dependent, such that luminous galaxies become poor
tracers of the underlying dark matter.Comment: 12 pages, 6 figures, Accepted to Ap
The contribution of hydrogen to the corrosion of 2024 aluminium alloy exposed to thermal and environmental cycling in chloride media
This work is focused on the role of hydrogen in corrosion damage induced by the cyclic exposure of 2024 aluminium alloy to chloride media with air emersion periods at room and/or negative temperatures. Various analysis and microscopic observation techniques were applied at intergranular corrosion defects. A mechanism involving the contribution of hydrogen to the degradation of the alloy mechanical properties is presented. Several consecutive stress states appear during cycling, resulting from volume expansion of the electrolyte trapped in the intergranular defects during emersion phases at -20°C. These stress states lead to hydrogen diffusion, transport and trapping
Voids in the Large-Scale Structure
Voids are the most prominent feature of the LSS of the universe. Still, they
have been generally ignored in quantitative analysis of it, essentially due to
the lack of an objective tool to identify and quantify the voids. To overcome
this, we present the Void-Finder algorithm, a novel tool for objectively
quantifying galaxy voids. The algorithm classifies galaxies as either wall- or
field-galaxies. Then it identifies voids in the wall-galaxy distribution. Voids
are defined as continuous volumes that do not contain any wall-galaxies. The
voids must be thicker than an adjustable limit, which is refined in successive
iterations. We test the algorithm using Voronoi tessellations. By appropriate
scaling of the parameters we apply it to the SSRS2 survey and to the IRAS 1.2
Jy. Both surveys show similar properties: ~50% of the volume is filled by the
voids, which have a scale of at least 40 Mpc, and a -0.9 under-density. Faint
galaxies populate the voids more than bright ones. These results suggest that
both optically and IRAS selected galaxies delineate the same LSS. Comparison
with the recovered mass distribution further suggests that the observed voids
in the galaxy distribution correspond well to under-dense regions in the mass
distribution. This confirms the gravitational origin of the voids.Comment: Submitted to ApJ; 33 pages, aaspp4 LaTeX file, using epsfig and
natbib, 1 table, 12 PS figures. Complete gzipped version is available at
http://shemesh.fiz.huji.ac.il/hagai/; uuencoded file is available at
http://shemesh.fiz.huji.ac.il/papers/ep3.uu or ftp://shemesh.fiz.huji.ac.i
The study of the negative pion production in neutron-proton collisions at beam momenta below 1.8 GeV/c
A detailed investigation of the reaction np -> pp\pi^{-} has been carried out
using the data obtained with the continuous neutron beam produced by charge
exchange scattering of protons off a deuterium target. A partial wave
event-by-event based maximum likelihood analysis was applied to determine
contributions of different partial waves to the pion production process. The
combined analysis of the np -> pp\pi^{-} and pp -> pp\pi^{0} data measured in
the same energy region allows us to determine the contribution of isoscalar
partial waves (I=0) in the momentum range from 1.1 up to 1.8 GeV/c. The decay
of isoscalar partial waves into (^1S_0)_{pp}\pi$ channel provides a good tool
for a determination of the pp S-wave scalar scattering length in the final
state which was found to be a_{pp}=-7.5\pm 0.3 fm.Comment: 6 pages, 6 figure
Recommended from our members
The biomechanics of amnion rupture: an X-ray diffraction study
Pre-term birth is the leading cause of perinatal and neonatal mortality, 40% of which are attributed to the pre-term premature rupture of amnion. Rupture of amnion is thought to be associated with a corresponding decrease in the extracellular collagen content and/or increase in collagenase activity. However, there is very little information concerning the detailed organisation of fibrillar collagen in amnion and how this might influence rupture. Here we identify a loss of lattice like arrangement in collagen organisation from areas near to the rupture site, and present a 9% increase in fibril spacing and a 50% decrease in fibrillar organisation using quantitative measurements gained by transmission electron microscopy and the novel application of synchrotron X-ray diffraction. These data provide an accurate insight into the biomechanical process of amnion rupture and highlight X-ray diffraction as a new and powerful tool in our understanding of this process
Localisation and endocrine control of hyaluronan synthase (HAS) 2, HAS3 and CD44 expression in sheep granulosa cells
Warped Riemannian metrics for location-scale models
The present paper shows that warped Riemannian metrics, a class of Riemannian
metrics which play a prominent role in Riemannian geometry, are also of
fundamental importance in information geometry. Precisely, the paper features a
new theorem, which states that the Rao-Fisher information metric of any
location-scale model, defined on a Riemannian manifold, is a warped Riemannian
metric, whenever this model is invariant under the action of some Lie group.
This theorem is a valuable tool in finding the expression of the Rao-Fisher
information metric of location-scale models defined on high-dimensional
Riemannian manifolds. Indeed, a warped Riemannian metric is fully determined by
only two functions of a single variable, irrespective of the dimension of the
underlying Riemannian manifold. Starting from this theorem, several original
contributions are made. The expression of the Rao-Fisher information metric of
the Riemannian Gaussian model is provided, for the first time in the
literature. A generalised definition of the Mahalanobis distance is introduced,
which is applicable to any location-scale model defined on a Riemannian
manifold. The solution of the geodesic equation is obtained, for any Rao-Fisher
information metric defined in terms of warped Riemannian metrics. Finally,
using a mixture of analytical and numerical computations, it is shown that the
parameter space of the von Mises-Fisher model of -dimensional directional
data, when equipped with its Rao-Fisher information metric, becomes a Hadamard
manifold, a simply-connected complete Riemannian manifold of negative sectional
curvature, for . Hopefully, in upcoming work, this will be
proved for any value of .Comment: first version, before submissio
Manipulating the motion of large neutral molecules
Large molecules have complex potential-energy surfaces with many local
minima. They exhibit multiple stereo-isomers, even at very low temperatures. In
this paper we discuss the different approaches for the manipulation of the
motion of large and complex molecules, like amino acids or peptides, and the
prospects of state- and conformer-selected, focused, and slow beams of such
molecules for studying their molecular properties and for fundamental physics
studies. Accepted for publication in Faraday Disc. 142 (2009), DOI:
10.1039/b820045aComment: 12 page
- …
