32,349 research outputs found
Semiquantitative Infrared Analysis of Diketones and Anhydrides in a Reaction Mixture
The ozonolysis of a hydroxymethylene ketone yields a mixture of diketone and anhydride. Treatment of hydroxymethylene camphor with ozone affords, in addition to the expected camphor quinone, a surprisingly large amount of camphoric anhydride (56%) via Baeyer-Villager reaction. Use of infrared absorption to analyze the relative amounts of camphor quinone and camphoric anhydride in a reaction mixture was studied by comparing peak heights of their carbonyl stretching bands
Image patch analysis and clustering of sunspots: a dimensionality reduction approach
Sunspots, as seen in white light or continuum images, are associated with
regions of high magnetic activity on the Sun, visible on magnetogram images.
Their complexity is correlated with explosive solar activity and so classifying
these active regions is useful for predicting future solar activity. Current
classification of sunspot groups is visually based and suffers from bias.
Supervised learning methods can reduce human bias but fail to optimally
capitalize on the information present in sunspot images. This paper uses two
image modalities (continuum and magnetogram) to characterize the spatial and
modal interactions of sunspot and magnetic active region images and presents a
new approach to cluster the images. Specifically, in the framework of image
patch analysis, we estimate the number of intrinsic parameters required to
describe the spatial and modal dependencies, the correlation between the two
modalities and the corresponding spatial patterns, and examine the phenomena at
different scales within the images. To do this, we use linear and nonlinear
intrinsic dimension estimators, canonical correlation analysis, and
multiresolution analysis of intrinsic dimension.Comment: 5 pages, 7 figures, accepted to ICIP 201
Probing Unquenching Effects in the Gluon Polarisation in Light Mesons
We introduce an extension to the ladder truncated Bethe-Salpeter equation for
mesons and the rainbow truncated quark Dyson-Schwinger equations which includes
quark-loop corrections to the gluon propagator. This truncation scheme obeys
the axialvector Ward-Takahashi identity relating the quark self-energy and the
Bethe-Salpeter kernel. Two different approximations to the Yang-Mills sector
are used as input: the first is a sophisticated truncation of the full
Yang-Mills Dyson-Schwinger equations, the second is a phenomenologically
motivated form. We find that the spectra and decay constants of pseudoscalar
and vector mesons are overall described well for either approach. Meson mass
results for charge eigenstate vector and pseudoscalar meson masses are compared
to lattice data. The effects of unquenching the system are small but not
negligible.Comment: 26 pages, 13 figure
About the Algebraic Solutions of Smallest Enclosing Cylinders Problems
Given n points in Euclidean space E^d, we propose an algebraic algorithm to
compute the best fitting (d-1)-cylinder. This algorithm computes the unknown
direction of the axis of the cylinder. The location of the axis and the radius
of the cylinder are deduced analytically from this direction. Special attention
is paid to the case d=3 when n=4 and n=5. For the former, the minimal radius
enclosing cylinder is computed algebrically from constrained minimization of a
quartic form of the unknown direction of the axis. For the latter, an
analytical condition of existence of the circumscribed cylinder is given, and
the algorithm reduces to find the zeroes of an one unknown polynomial of degree
at most 6. In both cases, the other parameters of the cylinder are deduced
analytically. The minimal radius enclosing cylinder is computed analytically
for the regular tetrahedron and for a trigonal bipyramids family with a
symmetry axis of order 3.Comment: 13 pages, 0 figure; revised version submitted to publication
(previous version is a copy of the original one of 2010
Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis
The flare-productivity of an active region is observed to be related to its
spatial complexity. Mount Wilson or McIntosh sunspot classifications measure
such complexity but in a categorical way, and may therefore not use all the
information present in the observations. Moreover, such categorical schemes
hinder a systematic study of an active region's evolution for example. We
propose fine-scale quantitative descriptors for an active region's complexity
and relate them to the Mount Wilson classification. We analyze the local
correlation structure within continuum and magnetogram data, as well as the
cross-correlation between continuum and magnetogram data. We compute the
intrinsic dimension, partial correlation, and canonical correlation analysis
(CCA) of image patches of continuum and magnetogram active region images taken
from the SOHO-MDI instrument. We use masks of sunspots derived from continuum
as well as larger masks of magnetic active regions derived from the magnetogram
to analyze separately the core part of an active region from its surrounding
part. We find the relationship between complexity of an active region as
measured by Mount Wilson and the intrinsic dimension of its image patches.
Partial correlation patterns exhibit approximately a third-order Markov
structure. CCA reveals different patterns of correlation between continuum and
magnetogram within the sunspots and in the region surrounding the sunspots.
These results also pave the way for patch-based dictionary learning with a view
towards automatic clustering of active regions.Comment: Accepted for publication in the Journal of Space Weather and Space
Climate (SWSC). 23 pages, 11 figure
Arrival direction distribution of cosmic rays of energy 10 (18) eV
The Haverah Park air-shower experiment recorded over 8500 events with primary energy 10 to the 18th power eV between 1963 and 1983. An analysis of these events for anisotropies in celestial and galactic coordinates is reported. No very striking anisotropies are observed
Gamma-ray burst host galaxies and the link to star-formation
We briefly review the current status of the study of long-duration gamma-ray
burst (GRB) host galaxies. GRB host galaxies are mainly interesting to study
for two reasons: 1) they may help us understand where and when massive stars
were formed throughout cosmic history, and 2) the properties of host galaxies
and the localisation within the hosts where GRBs are formed may give essential
clues to the precise nature of the progenitors. The main current problem is to
understand to what degree GRBs are biased tracers of star formation. If GRBs
are only formed by low-metallicity stars, then their host galaxies will not
give a representative view of where stars are formed in the Universe (at least
not a low redshifts). On the other hand, if there is no dependency on
metallicity then the nature of the host galaxies leads to the perhaps
surprising conclusion that most stars are formed in dwarf galaxies. In order to
resolve this issue and to fully exploit the potential of GRBs as probes of
star-forming galaxies throughout the observable universe it is mandatory that a
complete sample of bursts with redshifts and host galaxy detections is built.Comment: 9 pages, 3 figures. To appear in the proceedings of the Eleventh
Marcel Grossmann Meeting on General Relativity, eds. H. Kleinert, R. T.
Jantzen & R. Ruffini, World Scientific, Singapore, 200
A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions
The sheer amounts of biological data that are generated in recent years have
driven the development of network analysis tools to facilitate the
interpretation and representation of these data. A fundamental challenge in
this domain is the reconstruction of a protein-protein subnetwork that
underlies a process of interest from a genome-wide screen of associated genes.
Despite intense work in this area, current algorithmic approaches are largely
limited to analyzing a single screen and are, thus, unable to account for
information on condition-specific genes, or reveal the dynamics (over time or
condition) of the process in question. Here we propose a novel formulation for
network reconstruction from multiple-condition data and devise an efficient
integer program solution for it. We apply our algorithm to analyze the response
to influenza infection in humans over time as well as to analyze a pair of ER
export related screens in humans. By comparing to an extant, single-condition
tool we demonstrate the power of our new approach in integrating data from
multiple conditions in a compact and coherent manner, capturing the dynamics of
the underlying processes.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Dissociating task difficulty from incongruence in face-voice emotion integration
In the everyday environment, affective information is conveyed by both the face and the voice. Studies have demonstrated that a concurrently presented voice can alter the way that an emotional face expression is perceived, and vice versa, leading to emotional conflict if the information in the two modalities is mismatched. Additionally, evidence suggests that incongruence of emotional valence activates cerebral networks involved in conflict monitoring and resolution. However, it is currently unclear whether this is due to task difficulty—that incongruent stimuli are harder to categorize—or simply to the detection of mismatching information in the two modalities. The aim of the present fMRI study was to examine the neurophysiological correlates of processing incongruent emotional information, independent of task difficulty. Subjects were scanned while judging the emotion of face-voice affective stimuli. Both the face and voice were parametrically morphed between anger and happiness and then paired in all audiovisual combinations, resulting in stimuli each defined by two separate values: the degree of incongruence between the face and voice, and the degree of clarity of the combined face-voice information. Due to the specific morphing procedure utilized, we hypothesized that the clarity value, rather than incongruence value, would better reflect task difficulty. Behavioral data revealed that participants integrated face and voice affective information, and that the clarity, as opposed to incongruence value correlated with categorization difficulty. Cerebrally, incongruence was more associated with activity in the superior temporal region, which emerged after task difficulty had been accounted for. Overall, our results suggest that activation in the superior temporal region in response to incongruent information cannot be explained simply by task difficulty, and may rather be due to detection of mismatching information between the two modalities
- …
