3,451 research outputs found
Measuring vertebrate telomeres: applications and limitations
Telomeres are short tandem repeated sequences of DNA found at the ends of eukaryotic
chromosomes that function in stabilizing chromosomal end integrity.
In vivo
studies of
somatic tissue of mammals and birds have shown a correlation between telomere length and
organismal age within species, and correlations between telomere shortening rate and
lifespan among species. This result presents the tantalizing possibility that telomere length
could be used to provide much needed information on age, ageing and survival in natural
populations where longitudinal studies are lacking. Here we review methods available for
measuring telomere length and discuss the potential uses and limitations of telomeres as
age and ageing estimators in the fields of vertebrate ecology, evolution and conservation
Age-specific vaccine effectiveness of seasonal 2010/2011 and pandemic influenza A(H1N1) 2009 vaccines in preventing influenza in the United Kingdom
An analysis was undertaken to measure age-specific vaccine effectiveness (VE) of 2010/11 trivalent seasonal influenza vaccine (TIV) and monovalent 2009 pandemic influenza vaccine (PIV) administered in 2009/2010. The test-negative case-control study design was employed based on patients consulting primary care. Overall TIV effectiveness, adjusted for age and month, against confirmed influenza A(H1N1)pdm 2009 infection was 56% (95% CI 42–66); age-specific adjusted VE was 87% (95% CI 45–97) in <5-year-olds and 84% (95% CI 27–97) in 5- to 14-year-olds. Adjusted VE for PIV was only 28% (95% CI x6 to 51) overall and 72% (95% CI 15–91) in <5-year-olds. For confirmed influenza B infection, TIV effectiveness was 57% (95% CI 42–68) and in 5- to 14-year-olds 75% (95% CI 32–91). TIV provided moderate protection against the main circulating strains in 2010/2011, with higher protection in children. PIV administered during the previous season provided residual protection after 1 year, particularly in the <5 years age group
A human colonic crypt culture system to study regulation of stem cell-driven tissue renewal and physiological function
The intestinal epithelium is one of the most rapidly renewing tissues in the human body and fulfils vital physiological roles such as barrier function and transport of nutrients and fluid. Investigation of gut epithelial physiology in health and disease has been hampered by the lack of ex vivo models of the native human intestinal epithelium. Recently, remarkable progress has been made in defining intestinal stem cells and in generating intestinal organoid cultures. In parallel, we have developed a 3D culture system of the native human colonic epithelium that recapitulates the topological hierarchy of stem cell-driven tissue renewal and permits the physiological study of native polarized epithelial cells. Here we describe methods to establish 3D cultures of intact human colonic crypts and conduct real-time imaging of intestinal tissue renewal, cellular signalling, and physiological function, in conjunction with manipulation of gene expression by lentiviral or adenoviral transduction. Visualization of mRNA- and protein-expression patterns in cultured human colonic crypts, and cross-validation with crypts derived from fixed mucosal biopsies, is also described. Alongside studies using intestinal organoids, the near-native human colonic crypt culture model will help to bridge the gap that exists between investigation of colon cancer cell lines and/or animal (tissue) studies, and progression to clinical trials. To this end, the near native human colonic crypt model provides a platform to aid the development of novel strategies for the prevention of inflammatory bowel disease and cancer
Observational study to estimate the changes in the effectiveness of bacillus Calmette-Guérin (BCG) vaccination with time since vaccination for preventing tuberculosis in the UK.
Until recently, evidence that protection from the bacillus Calmette-Guérin (BCG) vaccination lasted beyond 10 years was limited. In the past few years, studies in Brazil and the USA (in Native Americans) have suggested that protection from BCG vaccination against tuberculosis (TB) in childhood can last for several decades. The UK's universal school-age BCG vaccination programme was stopped in 2005 and the programme of selective vaccination of high-risk (usually ethnic minority) infants was enhanced.
To assess the duration of protection of infant and school-age BCG vaccination against TB in the UK.
Two case-control studies of the duration of protection of BCG vaccination were conducted, the first on minority ethnic groups who were eligible for infant BCG vaccination 0-19 years earlier and the second on white subjects eligible for school-age BCG vaccination 10-29 years earlier. TB cases were selected from notifications to the UK national Enhanced Tuberculosis Surveillance system from 2003 to 2012. Population-based control subjects, frequency matched for age, were recruited. BCG vaccination status was established from BCG records, scar reading and BCG history. Information on potential confounders was collected using computer-assisted interviews. Vaccine effectiveness was estimated as a function of time since vaccination, using a case-cohort analysis based on Cox regression.
In the infant BCG study, vaccination status was determined using vaccination records as recall was poor and concordance between records and scar reading was limited. A protective effect was seen up to 10 years following infant vaccination [< 5 years since vaccination: vaccine effectiveness (VE) 66%, 95% confidence interval (CI) 17% to 86%; 5-10 years since vaccination: VE 75%, 95% CI 43% to 89%], but there was weak evidence of an effect 10-15 years after vaccination (VE 36%, 95% CI negative to 77%; p = 0.396). The analyses of the protective effect of infant BCG vaccination were adjusted for confounders, including birth cohort and ethnicity. For school-aged BCG vaccination, VE was 51% (95% CI 21% to 69%) 10-15 years after vaccination and 57% (95% CI 33% to 72%) 15-20 years after vaccination, beyond which time protection appeared to wane. Ascertainment of vaccination status was based on self-reported history and scar reading.
The difficulty in examining vaccination sites in older women in the high-risk minority ethnic study population and the sparsity of vaccine record data in the later time periods precluded robust assessment of protection from infant BCG vaccination > 10 years after vaccination.
Infant BCG vaccination in a population at high risk for TB was shown to provide protection for at least 10 years, whereas in the white population school-age vaccination was shown to provide protection for at least 20 years. This evidence may inform TB vaccination programmes (e.g. the timing of administration of improved TB vaccines, if they become available) and cost-effectiveness studies. Methods to deal with missing record data in the infant study could be explored, including the use of scar reading.
The National Institute for Health Research Health Technology Assessment programme. During the conduct of the study, Jonathan Sterne, Ibrahim Abubakar and Laura C Rodrigues received other funding from NIHR; Ibrahim Abubakar and Laura C Rodrigues have also received funding from the Medical Research Council. Punam Mangtani received funding from the Biotechnology and Biological Sciences Research Council
Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia
BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 mu l physiological serum (SC, n:8) or 5x10(5) human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Institute of Health Carlos III, ISCIII; Junta de Andaluci
Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization.
We have previously demonstrated that Stat3 regulates lysosomal-mediated programmed cell death (LM-PCD) during mouse mammary gland involution in vivo. However, the mechanism that controls the release of lysosomal cathepsins to initiate cell death in this context has not been elucidated. We show here that Stat3 regulates the formation of large lysosomal vacuoles that contain triglyceride. Furthermore, we demonstrate that milk fat globules (MFGs) are toxic to epithelial cells and that, when applied to purified lysosomes, the MFG hydrolysate oleic acid potently induces lysosomal leakiness. Additionally, uptake of secreted MFGs coated in butyrophilin 1A1 is diminished in Stat3-ablated mammary glands and loss of the phagocytosis bridging molecule MFG-E8 results in reduced leakage of cathepsins in vivo. We propose that Stat3 regulates LM-PCD in mouse mammary gland by switching cellular function from secretion to uptake of MFGs. Thereafter, perturbation of lysosomal vesicle membranes by high levels of free fatty acids results in controlled leakage of cathepsins culminating in cell death.This work was
supported by a grant from the Medical Research Council programme grant no. MR/J001023/1 (T.J.S. and B. L-L.)
and a Cancer Research UK Cambridge Cancer Centre PhD studentship (H.K.R.).This is the accepted manuscript. The final version is available from Nature Publishing at http://www.nature.com/ncb/journal/vaop/ncurrent/full/ncb3043.html
A Terminal Velocity on the Landscape: Particle Production near Extra Species Loci in Higher Dimensions
We investigate particle production near extra species loci (ESL) in a higher
dimensional field space and derive a speed limit in moduli space at weak
coupling. This terminal velocity is set by the characteristic ESL-separation
and the coupling of the extra degrees of freedom to the moduli, but it is
independent of the moduli's potential if the dimensionality of the field space
is considerably larger than the dimensionality of the loci, D >> d. Once the
terminal velocity is approached, particles are produced at a plethora of nearby
ESLs, preventing a further increase in speed via their backreaction. It is
possible to drive inflation at the terminal velocity, providing a
generalization of trapped inflation with attractive features: we find that more
than sixty e-folds of inflation for sub-Planckian excursions in field space are
possible if ESLs are ubiquitous, without fine tuning of initial conditions and
less tuned potentials. We construct a simple, observationally viable model with
a slightly red scalar power-spectrum and suppressed gravitational waves; we
comment on the presence of additional observational signatures originating from
IR-cascading and individual massive particles. We also show that
moduli-trapping at an ESL is suppressed for D >> d, hindering dynamical
selection of high-symmetry vacua on the landscape based on this mechanism.Comment: 46 pages, 6 figures. V3: typos corrected compared to JHEP version,
conclusions unchange
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Study of B0(s)→K0Sh+h′− decays with first observation of B0s→K0SK±π∓ and B0s→K0Sπ+π−
A search for charmless three-body decays of B 0 and B0s mesons with a K0S meson in the final state is performed using the pp collision data, corresponding to an integrated luminosity of 1.0 fb−1, collected at a centre-of-mass energy of 7 TeV recorded by the LHCb experiment. Branching fractions of the B0(s)→K0Sh+h′− decay modes (h (′) = π, K), relative to the well measured B0→K0Sπ+π− decay, are obtained. First observation of the decay modes B0s→K0SK±π∓ and B0s→K0Sπ+π− and confirmation of the decay B0→K0SK±π∓ are reported. The following relative branching fraction measurements or limits are obtained B(B0→K0SK±π∓)B(B0→K0Sπ+π−)=0.128±0.017(stat.)±0.009(syst.), B(B0→K0SK+K−)B(B0→K0Sπ+π−)=0.385±0.031(stat.)±0.023(syst.), B(B0s→K0Sπ+π−)B(B0→K0Sπ+π−)=0.29±0.06(stat.)±0.03(syst.)±0.02(fs/fd), B(B0s→K0SK±π∓)B(B0→K0Sπ+π−)=1.48±0.12(stat.)±0.08(syst.)±0.12(fs/fd)B(B0s→K0SK+K−)B(B0→K0Sπ+π−)∈[0.004;0.068]at90%CL
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …
