2,833 research outputs found
Decreased mass specific respiration under experimental warming is robust to the microbial biomass method employed
Hartley et al. question whether reduction in Rmass, under experimental warming, arises because of the biomass method. We show the method they treat as independent yields the same result. We describe why the substrate-depletion hypothesis may not solely explain observed responses, and urge caution in interpretation of the seasonal data. © 2009 Blackwell Publishing Ltd/CNRS
Organic aerosol formation downwind from the Deepwater Horizon oil spill.
A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons
Improving corporate governance in state-owned corporations in China: which way forward?
This article discusses corporate governance in China. It outlines the basic agency problem in Chinese listed companies and questions the effectiveness of the current mechanisms employed to improve their standards of governance. Importantly, it considers alternative means through which corporate practice in China can be brought into line with international expectations and stresses the urgency with which this task must be tackled. It concludes that regulators in China must construct a corporate governance model which is compatible with its domestic setting and not rush to adopt governance initiatives modelled on those in cultures which are fundamentally different in the hope of also reproducing their success
Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control
It is widely accepted that the complex dynamics characteristic of recurrent
neural circuits contributes in a fundamental manner to brain function. Progress
has been slow in understanding and exploiting the computational power of
recurrent dynamics for two main reasons: nonlinear recurrent networks often
exhibit chaotic behavior and most known learning rules do not work in robust
fashion in recurrent networks. Here we address both these problems by
demonstrating how random recurrent networks (RRN) that initially exhibit
chaotic dynamics can be tuned through a supervised learning rule to generate
locally stable neural patterns of activity that are both complex and robust to
noise. The outcome is a novel neural network regime that exhibits both
transiently stable and chaotic trajectories. We further show that the recurrent
learning rule dramatically increases the ability of RRNs to generate complex
spatiotemporal motor patterns, and accounts for recent experimental data
showing a decrease in neural variability in response to stimulus onset
Atmospheric emissions from the deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate
The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (∼258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (∼33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (∼14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills. Copyright 2011 by the American Geophysical Union
Corporate governance compliance and disclosure in the banking sector: using data from Japan
Using regression model this study investigates which characteristics of a bank is associated with the extent of corporate governance disclosure in Japan. The findings suggest that on average 8 banks out of a sample of 46 disclose optimal corporate governance information. The regression model results reveal in general that non-executive directors, cross-ownership, capital adequacy ratio and type of auditors are associated with the extent of corporate governance disclosure. Of these four variables, non-executive directors have a more significant impact on the extent of disclosure contrary to total assets and audit firms of banks in the context of Japan. The findings of this paper are relevant for corporate regulators, professional associations and developers of corporate governance code when designing or updating corporate governance code
Sex differences in the movement patterns of free-ranging chimpanzees (Pan troglodytes schweinfurthii): foraging and border checking
Most social primates live in cohesive groups, so travel paths inevitably reflect compromise: decision processes of individuals are obscured. The fission-fusion social organisation of the chimpanzee, however, allows an individual’s movements to be investigated independently. We followed 15 chimpanzees (8 male and 7 female) through the relatively flat forest of Budongo, Uganda, plotting the path of each individual over periods of 1-3 days. Chimpanzee movement was parsed into phases ending with halts of more than 20 minutes, during which individuals fed, rested or engaged in social activities. Males, lactating or pregnant females, and sexually receptive females all travelled similar average distances between halts, at similar speeds, and along similarly direct beeline paths. Compared to lactating or pregnant females, males did travel for a significantly longer time each day and halted more often, but the most striking sex differences appeared in the organisation of movement phases into a day’s path. After a halt, males tended to continue in the same direction as before. Lactating or pregnant females showed no such strategy and often retraced the preceding phase, returning to previously visited food patches. We suggest that female chimpanzee movements approximate an optimal solution to feeding requirements, whereas the paths of males allow integration of foraging with territorial defence. The ‘continually moving forwards’ strategy of males enables them to monitor their territory boundaries – border checking – whilst foraging, generally avoiding the explicit boundary patrols observed at other chimpanzee study sites
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega
High-statistics differential cross sections and spin density matrix elements
for the reaction gamma p -> p omega have been measured using the CLAS at
Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV.
Results are reported in 112 10-MeV wide CM energy bins, each subdivided into
cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega
photoproduction measurements to date. A number of prominent structures are
clearly present in the data. Many of these have not previously been observed
due to limited statistics in earlier measurements
Recommended from our members
Output from VIP cells of the mammalian central clock regulates daily physiological rhythms
The suprachiasmatic nucleus (SCN) circadian clock is critical for optimising daily cycles in mammalian physiology and behaviour. The roles of the various SCN cell types in communicating timing information to downstream physiological systems remain incompletely understood, however. In particular, while vasoactive intestinal polypeptide (VIP) signalling is essential for SCN function and whole animal circadian rhythmicity, the specific contributions of VIP cell output to physiological control remains uncertain. Here we reveal a key role for SCN VIP cells in central clock output. Using multielectrode recording and optogenetic manipulations, we show that VIP neurons provide coordinated daily waves of GABAergic input to target cells across the paraventricular hypothalamus and ventral thalamus, supressing their activity during the mid to late day. Using chemogenetic manipulation, we further demonstrate specific roles for this circuitry in the daily control of heart rate and corticosterone secretion, collectively establishing SCN VIP cells as influential regulators of physiological timing
- …
