338 research outputs found
Localization of quasiparticles in a disordered vortex
We study the diffusive motion of low-energy normal quasiparticles along the
core of a single vortex in a dirty, type-II, s-wave superconductor. The physics
of this system is argued to be described by a one-dimensional supersymmetric
nonlinear sigma model, which differs from the sigma models known for disordered
metallic wires. For an isolated vortex and quasiparticle energies less than the
Thouless energy, we recover the spectral correlations that are predicted by
random matrix theory for the universality class C. We then consider the
transport problem of transmission of quasiparticles through a vortex connected
to particle reservoirs at both ends. The transmittance at zero energy exhibits
a weak localization correction reminiscent of quasi-one-dimensional metallic
systems with symmetry index beta = 1. Weak localization disappears with
increasing energy over a scale set by the Thouless energy. This crossover
should be observable in measurements of the longitudinal heat conductivity of
an ensemble of vortices under mesoscopic conditions. In the regime of strong
localization, the localization length is shown to decrease by a factor of 8 as
the quasiparticle energy goes to zero.Comment: 38 pages, LaTeX2e + epsf, 4 eps figures, one reference adde
Current-voltage characteristics of quasi-one-dimensional superconductors: An S-curve in the constant voltage regime
Applying a constant voltage to superconducting nanowires we find that its
IV-characteristic exhibits an unusual S-behavior. This behavior is the direct
consequence of the dynamics of the superconducting condensate and of the
existence of two different critical currents: j_{c2} at which the pure
superconducting state becomes unstable and j_{c1}<j_{c2} at which the phase
slip state is realized in the system.Comment: 4 pages, 5 figures, replaced with minor change
Onset of Vortices in Thin Superconducting Strips and Wires
Spontaneous nucleation and the consequent penetration of vortices into thin
superconducting films and wires, subjected to a magnetic field, can be
considered as a nonlinear stage of primary instability of the current-carrying
superconducting state. The development of the instability leads to the
formation of a chain of vortices in strips and helicoidal vortex lines in
wires. The boundary of instability was obtained analytically. The nonlinear
stage was investigated by simulations of the time-dependent generalized
Ginzburg-Landau equation.Comment: REVTeX 3.0, 12 pages, 5Postscript figures (uuencoded). Accepted for
Phys. Rev.
Comparison of image analysis software packages in the assessment of adhesion of microorganisms to mucosal epithelium using confocal laser scanning microscopy
We have compared current image analysis software packages in order to find the most useful one for assessing microbial adhesion and inhibition of adhesion to tissue sections. We have used organisms of different sizes, the bacterium Helicobacter pylori and the yeast Candida albicans. Adhesion of FITC-labelled H. pylori and C. albicans was assessed by confocal microscopy. Four different Image analysis software packages, NIH-Image, IP Lab, Image Pro+, and Metamorph, were compared for their ability to quantify adhesion of the two organisms and several quantification methods were devised for each package. For both organisms, the dynamic range that could be detected by the software packages was 1×106?1×109 cells/ml. Of the four software packages tested, our results showed that Metamorph software, using our ?Region of Interest? method, with the software's ?Standard Area Method? of counting, was the most suitable for quantifying adhesion of both organisms because of its unique ability to separate clumps of microbial cells. Moreover, fewer steps were required. By pre-incubating H. pylori with the glycoconjugate Lewis b-HSA, an inhibition of binding of 48.8% was achieved using 250 ?g/ml Lewis b-HSA. The method we have devised using Metamorph software, provides a simple, quick and accurate way of quantifying adhesion and inhibition of adhesion of microbial cells to the epithelial surface of tissue sections. The method can be applied to organisms ranging in size from small bacteria to larger yeast cells
Properties of the Ideal Ginzburg-Landau Vortex Lattice
The magnetization curves M(H) for ideal type-II superconductors and the
maximum, minimum, and saddle point magnetic fields of the vortex lattice are
calculated from Ginzburg-Landau theory for the entire ranges of applied
magnetic fields Hc1 <= H < Hc2 or inductions 0 <= B < Hc2 and Ginzburg-Landau
parameters sqrt(1/2) <= kappa <= 1000. Results for the triangular and square
flux-line lattices are compared with the results of the circular cell
approximation. The exact magnetic field B(x,y) and magnetization M(H, kappa)
are compared with often used approximate expressions, some of which deviate
considerably or have limited validity. Useful limiting expressions and
analytical interpolation formulas are presented.Comment: 11 pages, 8 figure
The Current Carried by Bound States of a Superconducting Vortex
We investigate the spectrum of quasiparticle excitations in the core of
isolated pancake vortices in clean layered superconductors. Analysis of the
spectral current density shows that both the circular current around the vortex
center as well as any transport current through the vortex core is carried by
localized states bound to the core by Andreev scattering. Hence the physical
properties of the core are governed in clean high- superconductors
(e.g. the cuprate superconductors) by the Andreev bound states, and not by
normal electrons as it is the case for traditional (dirty) high-
superconductors.Comment: 17 pages in a RevTex (3.0) file plus 5 Figures in PostScript.
Submitted to Physical Review
Nucleation and Growth of the Superconducting Phase in the Presence of a Current
We study the localized stationary solutions of the one-dimensional
time-dependent Ginzburg-Landau equations in the presence of a current. These
threshold perturbations separate undercritical perturbations which return to
the normal phase from overcritical perturbations which lead to the
superconducting phase. Careful numerical work in the small-current limit shows
that the amplitude of these solutions is exponentially small in the current; we
provide an approximate analysis which captures this behavior. As the current is
increased toward the stall current J*, the width of these solutions diverges
resulting in widely separated normal-superconducting interfaces. We map out
numerically the dependence of J* on u (a parameter characterizing the material)
and use asymptotic analysis to derive the behaviors for large u (J* ~ u^-1/4)
and small u (J -> J_c, the critical deparing current), which agree with the
numerical work in these regimes. For currents other than J* the interface
moves, and in this case we study the interface velocity as a function of u and
J. We find that the velocities are bounded both as J -> 0 and as J -> J_c,
contrary to previous claims.Comment: 13 pages, 10 figures, Revte
Nonequilibrium relaxation in neutral BCS superconductors: Ginzburg-Landau approach with Landau damping in real time
We present a field-theoretical method to obtain consistently the equations of
motion for small amplitude fluctuations of the order parameter directly in real
time for a homogeneous, neutral BCS superconductor. This method allows to study
the nonequilibrium relaxation of the order parameter as an initial value
problem. We obtain the Ward identities and the effective actions for small
phase the amplitude fluctuations to one-loop order. Focusing on the
long-wavelength, low-frequency limit near the critical point, we obtain the
time-dependent Ginzburg-Landau effective action to one-loop order, which is
nonlocal as a consequence of Landau damping. The nonequilibrium relaxation of
the phase and amplitude fluctuations is studied directly in real time. The
long-wavelength phase fluctuation (Bogoliubov-Anderson-Goldstone mode) is
overdamped by Landau damping and the relaxation time scale diverges at the
critical point, revealing critical slowing down.Comment: 31 pages 14 figs, revised version, to appear in Phys. Rev.
Antiferromagnetic order and dielectric gap within the vortex core of antiferromagnetic superconductor
The structure of a superconducting vortex has been studied theoretically for
a dirty antiferromagnetic superconductor (AFSC), modelling an AFSC as a doped
semi-metal with s-wave superconducting pairing and antiferromagnetic
(dielectric) interaction between electrons (holes). It is also supposed that
the quasiparticles dispersion law possesses the property of nesting. The
distribution of the superconducting and magnetic order parameters near the
vortex core is calculated. It is shown that the antiferromagnetic order, been
suppressed at large distances, is restored around the superconducting flux and
the vortex core is in fact insulating and antiferromagnetic, in stark contrast
to the normal metal cores of traditional superconductors. Moreover, our model
calculations predict that as the temperature decreases the flux region of the
superconductivity and antiferromagnetism coexistence increases.Comment: 9 pages, 3 Postscript figures,NATO Advanced Research Workshop on
"Vortex dynamics in superconductors and other complex systems" Yalta, Crimea,
Ukraine, 13-17 September 200
- …
