1,294 research outputs found
induced formation of the and resonances on proton targets
We perform a calculation of the cross section for nine reactions induced by
scattering on protons. The reactions studied are , , ,
, , , , , . We find that in
the reactions producing a clear peak for the resonance
is found, while no trace of appears. Similarly, in the cases of production a strong peak is found for the resonance, with the
characteristic strong cusp shape. Cross sections and invariant mass
distributions are evaluated which should serve, comparing with future data, to
test the dynamics of the chiral unitary approach used for the evaluations and
the nature of these resonances.Comment: 7 pages, 9 figure
Phase diagram for diblock copolymer melts under cylindrical confinement
We extensively study the phase diagram of a diblock copolymer melt confined
in a cylindrical nanopore using real-space self-consistent mean-field theory.
We discover a rich variety of new two-dimensional equilibrium structures that
have no analog in the unconfined system. These include non-hexagonally
coordinated cylinder phases and structures intermediate between lamellae and
cylinders. We map the stability regions and phase boundaries for all the
structures we find. As the pore radius is decreased, the pore accommodates
fewer cylindrical domains and structural transitions occur as cylinders are
eliminated. Our results are consistent with experiments, but we also predict
phases yet to be observed.Comment: 12 pages, 3 figures. submitted to Physical Review Letter
Relationship Between Soil Properties and Plant Diversity in a Desert Riparian Forest in the Lower Reaches of the Tarim River, Xinjiang, China
Based on data from soil characteristics of 217 soil samples collected from 31 soil profiles that were located at eight monitoring sections in the lower reaches of the Tarim River in southern Xinjiang, we analyzed the spatial distribution of soil properties using nonparametric tests and ANOVA. Plant species diversity was analyzed based on vegetation data that were collected over several years. In addition, the study also examined the relationship between plant species diversity and soil parameters by using grey correlation analysis. The results show a significant difference (p < 0.05) in soil organic matter, total N, and total K between the top layer (0-50cm) and the deep layers (>50cm). Along the different monitoring sections, going from the upper to the lower reaches at locations of 150m away from the right riverbank of the Tarim River, the plant species diversity index (Shannon-Weiner index) has the same trend as total N. Furthermore, plant communities change from compound communities to a single community corresponding to the changes in plant species diversity-namely, from the communities composed of trees (Populus euphratica Oliv.), shrubs (Tamarix spp), and herbs to a pure Tamarix community. Grey correlation analyses indicated that significant relationships exist between plant species diversity, soil organic matter, and total N at the 0-50cm soil layer
Superdense Matter
We review recent work on the phase structure of QCD at very high baryon
density. We introduce the phenomenon of color superconductivity and discuss the
use of weak coupling methods. We study the phase structure as a function of the
number of flavors and their masses. We also introduce effective theories that
describe low energy excitations at high baryon density. Finally, we study the
possibility of kaon condensation at very large baryon density.Comment: 13 pages, talk at ICPAQGP, Jaipur, India, Nov. 26-30, 2001; to appear
in the proceeding
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
To gain insight into how mutant huntingtin (mHtt) CAG repeat length modifies Huntington's disease (HD) pathogenesis, we profiled mRNA in over 600 brain and peripheral tissue samples from HD knock-in mice with increasing CAG repeat lengths. We found repeat length-dependent transcriptional signatures to be prominent in the striatum, less so in cortex, and minimal in the liver. Coexpression network analyses revealed 13 striatal and 5 cortical modules that correlated highly with CAG length and age, and that were preserved in HD models and sometimes in patients. Top striatal modules implicated mHtt CAG length and age in graded impairment in the expression of identity genes for striatal medium spiny neurons and in dysregulation of cyclic AMP signaling, cell death and protocadherin genes. We used proteomics to confirm 790 genes and 5 striatal modules with CAG length-dependent dysregulation at the protein level, and validated 22 striatal module genes as modifiers of mHtt toxicities in vivo
Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV
The production of deuterons and antideuterons in the transverse momentum
range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at
sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A
coalescence analysis comparing the deuteron and antideuteron spectra with those
of protons and antiprotons, has been performed. The coalescence probability is
equal for both deuterons and antideuterons and increases as a function of p_T,
which is consistent with an expanding collision zone. Comparing (anti)proton
yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/-
0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Scaling laws near the conformal window of many-flavor QCD
We derive universal scaling laws for physical observables such as the
critical temperature, the chiral condensate, and the pion decay constant as a
function of the flavor number near the conformal window of many-flavor QCD in
the chiral limit. We argue on general grounds that the associated critical
exponents are all interrelated and can be determined from the critical exponent
of the running gauge coupling at the Caswell-Banks-Zaks infrared fixed point.
We illustrate our findings with the aid of nonperturbative functional
Renormalization Group (RG) calculations and low-energy QCD models.Comment: 18 pages, 4 figures, references added and discussion expanded
(matches JHEP version
Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells
February 17, 2011The conversion of lineage-committed cells to induced pluripotent stem cells (iPSCs) by reprogramming is accompanied by a global remodeling of the epigenome[superscript 1, 2, 3, 4, 5], resulting in altered patterns of gene expression[superscript 2, 6, 7, 8, 9]. Here we characterize the transcriptional reorganization of large intergenic non-coding RNAs (lincRNAs)[superscript 10, 11] that occurs upon derivation of human iPSCs and identify numerous lincRNAs whose expression is linked to pluripotency. Among these, we defined ten lincRNAs whose expression was elevated in iPSCs compared with embryonic stem cells, suggesting that their activation may promote the emergence of iPSCs. Supporting this, our results indicate that these lincRNAs are direct targets of key pluripotency transcription factors. Using loss-of-function and gain-of-function approaches, we found that one such lincRNA (lincRNA-RoR) modulates reprogramming, thus providing a first demonstration for critical functions of lincRNAs in the derivation of pluripotent stem cells
- …
