165 research outputs found

    Expropriation risk with social and political instability : a dynamic conservation modeling approach

    Get PDF
    Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2011-2012Ce travail de recherche propose un modèle dynamique des décisions de gestion du sol de la part d'un fermier lorsqu'il y a présence de conflits. Dans le contexte modélisé, la baisse de fertilité et la dégradation du sol entrave la sécurité alimentaire et le bien-être économique, comme par exemple en Afrique subsaharienne. La qualité du sol est modélisée comme une ressource naturelle renouvelable, alors que la présence de conflits est modélisé à l'aide d'un paramètre captant le risque de perde la terre (risque d'expropriation). Construire le problème économique de manière intertemporelle fait ressortir sous quelles conditions un fermier rationnel changera sa décision d'une stratégie de gestion durable à très long terme à une stratégie caractérisée par l'extinction defa la ressource. Nous caractérisons l'équilibre à long terme et comment celui-ci peut varier en fonction du risque d'expropriation

    Taking stock of nature: Essential biodiversity variables explained

    Get PDF
    In 2013, the Group on Earth Observations Biodiversity Observation Network (GEO BON) developed the framework of Essential Biodiversity Variables (EBVs), inspired by the Essential Climate Variables (ECVs). The EBV framework was developed to distill the complexity of biodiversity into a manageable list of priorities and to bring a more coordinated approach to observing biodiversity on a global scale. However, efforts to address the scientific challenges associated with this task have been hindered by diverse interpretations of the definition of an EBV. Here, the authors define an EBV as a critical biological variable that characterizes an aspect of biodiversity, functioning as the interface between raw data and indicators. This relationship is clarified through a multi-faceted stock market analogy, drawing from relevant examples of biodiversity indicators that use EBVs, such as the Living Planet Index and the UK Spring Index. Through this analogy, the authors seek to make the EBV concept accessible to a wider audience, especially to non-specialists and those in the policy sector, and to more clearly define the roles of EBVs and their relationship with biodiversity indicators. From this we expect to support advancement towards globally coordinated measurements of biodiversity

    Blueprints of Effective Biodiversity and Conservation Knowledge Products That Support Marine Policy

    Get PDF
    Biodiversity and conservation data are generally costly to collect, particularly in the marine realm. Hence, data collected for a given—often scientific—purpose are occasionally contributed toward secondary needs, such as policy implementation or other types of decision-making. However, while the quality and accessibility of marine biodiversity and conservation data have improved over the past decade, the ways in which these data can be used to develop and implement relevant management and conservation measures and actions are not always explicit. For this reason, there are a number of scientifically-sound datasets that are not used systematically to inform policy and decisions. Transforming these marine biodiversity and conservation datasets into knowledge products that convey the information required by policy- and decision-makers is an important step in strengthening knowledge exchange across the science-policy interface. Here, we identify seven characteristics of a selection of online biodiversity and conservation knowledge products that contribute to their ability to support policy- and decision-making in the marine realm (as measured by e.g., mentions in policy resolutions/decisions, or use for reporting under selected policy instruments; use in high-level screening for areas of biodiversity importance). These characteristics include: a clear policy mandate; established networks of collaborators; iterative co-design of a user-friendly interface; standardized, comprehensive and documented methods with quality assurance; consistent capacity and succession planning; accessible data and value-added products that are fit-for-purpose; and metrics of use collated and reported. The outcomes of this review are intended to: (a) support data creators/owners/providers in designing and curating biodiversity and conservation knowledge products that have greater influence, and hence impact, in policy- and decision-making, and (b) provide recommendations for how decision- and policy-makers can support the development, implementation, and sustainability of robust biodiversity and conservation knowledge products through the framing of marine policy and decision-making frameworks

    A global map of saltmarshes

    Get PDF
    Background Saltmarshes are extremely valuable but often overlooked ecosystems, contributing to livelihoods locally and globally through the associated ecosystem services they provide, including fish production, carbon storage and coastal protection. Despite their importance, knowledge of the current spatial distribution (occurrence and extent) of saltmarshes is incomplete. In light of increasing anthropogenic and environmental pressures on coastal ecosystems, global data on the occurrence and extent of saltmarshes are needed to draw attention to these critical ecosystems and to the benefits they generate for people. Such data can support resource management, strengthen decision-making and facilitate tracking of progress towards global conservation targets set by multilateral environmental agreements, such as the Aichi Biodiversity Targets of the United Nations\u27 (UN\u27s) Strategic Plan for Biodiversity 2011-2020, the Sustainable Development Goals of the UN\u27s 2030 Agenda for Sustainable Development and the Ramsar Convention. New information Here, we present the most complete dataset on saltmarsh occurrence and extent at the global scale. This dataset collates 350,985 individual occurrences of saltmarshes and presents the first global estimate of their known extent. The dataset captures locational and contextual data for saltmarsh in 99 countries worldwide. A total of 5,495,089 hectares of mapped saltmarsh across 43 countries and territories are represented in a Geographic Information Systems polygon shapefile. This estimate is at the relatively low end of previous estimates (2.2-40 Mha), however, we took the conservative approach in the mapping exercise and there are notable areas in Canada, Northern Russia, South America and Africa where saltmarshes are known to occur that require additional spatial data. Nevertheless, the most extensive saltmarsh worldwide are found outside the tropics, notably including the low-lying, ice-free coasts, bays and estuaries of the North Atlantic which are well represented in our global polygon dataset. Therefore, despite the gaps, we believe that, while incomplete, our global polygon data cover many of the important areas in Europe, the USA and Australia

    Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems

    Get PDF
    The Paris Agreement target of limiting global surface warming to 1.5–2∘C compared to pre-industrial levels by 2100 will still heavily impact the ocean. While ambitious mitigation and adaptation are both needed, the ocean provides major opportunities for action to reduce climate change globally and its impacts on vital ecosystems and ecosystem services. A comprehensive and systematic assessment of 13 global- and local-scale, ocean-based measures was performed to help steer the development and implementation of technologies and actions toward a sustainable outcome. We show that (1) all measures have tradeoffs and multiple criteria must be used for a comprehensive assessment of their potential, (2) greatest benefit is derived by combining global and local solutions, some of which could be implemented or scaled-up immediately, (3) some measures are too uncertain to be recommended yet, (4) political consistency must be achieved through effective cross-scale governance mechanisms, (5) scientific effort must focus on effectiveness, co-benefits, disbenefits, and costs of poorly tested as well as new and emerging measures

    A global map of saltmarshes

    Get PDF
    Background Saltmarshes are extremely valuable but often overlooked ecosystems, contributing to livelihoods locally and globally through the associated ecosystem services they provide, including fish production, carbon storage and coastal protection. Despite their importance, knowledge of the current spatial distribution (occurrence and extent) of saltmarshes is incomplete. In light of increasing anthropogenic and environmental pressures on coastal ecosystems, global data on the occurrence and extent of saltmarshes are needed to draw attention to these critical ecosystems and to the benefits they generate for people. Such data can support resource management, strengthen decision-making and facilitate tracking of progress towards global conservation targets set by multilateral environmental agreements, such as the Aichi Biodiversity Targets of the United Nations' (UN's) Strategic Plan for Biodiversity 2011-2020, the Sustainable Development Goals of the UN's 2030 Agenda for Sustainable Development and the Ramsar Convention. New information Here, we present the most complete dataset on saltmarsh occurrence and extent at the global scale. This dataset collates 350,985 individual occurrences of saltmarshes and presents the first global estimate of their known extent. The dataset captures locational and contextual data for saltmarsh in 99 countries worldwide. A total of 5,495,089 hectares of mapped saltmarsh across 43 countries and territories are represented in a Geographic Information Systems polygon shapefile. This estimate is at the relatively low end of previous estimates (2.2-40 Mha), however, we took the conservative approach in the mapping exercise and there are notable areas in Canada, Northern Russia, South America and Africa where saltmarshes are known to occur that require additional spatial data. Nevertheless, the most extensive saltmarsh worldwide are found outside the tropics, notably including the low-lying, ice-free coasts, bays and estuaries of the North Atlantic which are well represented in our global polygon dataset. Therefore, despite the gaps, we believe that, while incomplete, our global polygon data cover many of the important areas in Europe, the USA and Australia
    corecore