585 research outputs found
3D printed fluidics with embedded analytic functionality for automated reaction optimisation
Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis
Riemann's theorem for quantum tilted rotors
The angular momentum, angular velocity, Kelvin circulation, and vortex
velocity vectors of a quantum Riemann rotor are proven to be either (1) aligned
with a principal axis or (2) lie in a principal plane of the inertia ellipsoid.
In the second case, the ratios of the components of the Kelvin circulation to
the corresponding components of the angular momentum, and the ratios of the
components of the angular velocity to those of the vortex velocity are analytic
functions of the axes lengths.Comment: 8 pages, Phys. Rev.
Self-consistent anisotropic oscillator with cranked angular and vortex velocities
The Kelvin circulation is the kinematical Hermitian observable that measures
the true character of nuclear rotation. For the anisotropic oscillator, mean
field solutions with fixed angular momentum and Kelvin circulation are derived
in analytic form. The cranking Lagrange multipliers corresponding to the two
constraints are the angular and vortex velocities. Self-consistent solutions
are reported with a constraint to constant volume.Comment: 12 pages, LaTex/RevTex, Phys. Rev. C4
Electronic and structural properties of superconducting MgB, CaSi and related compounds
We report a detailed study of the electronic and structural properties of the
39K superconductor \mgbtwo and of several related systems of the same family,
namely \mgalbtwo, \bebtwo, \casitwo and \cabesi. Our calculations, which
include zone-center phonon frequencies and transport properties, are performed
within the local density approximation to the density functional theory, using
the full-potential linearized augmented plane wave (FLAPW) and the
norm-conserving pseudopotential methods. Our results indicate essentially
three-dimensional properties for these compounds; however, strongly
two-dimensional -bonding bands contribute significantly at the Fermi
level. Similarities and differences between \mgbtwo and \bebtwo (whose
superconducting properties have not been yet investigated) are analyzed in
detail. Our calculations for \mgalbtwo show that metal substitution cannot be
fully described in a rigid band model. \casitwo is studied as a function of
pressure, and Be substitution in the Si planes leads to a stable compound
similar in many aspects to diborides.Comment: Revised version, Phys.Rev.B in pres
Green functions for generalized point interactions in 1D: A scattering approach
Recently, general point interactions in one dimension has been used to model
a large number of different phenomena in quantum mechanics. Such potentials,
however, requires some sort of regularization to lead to meaningful results.
The usual ways to do so rely on technicalities which may hide important
physical aspects of the problem. In this work we present a new method to
calculate the exact Green functions for general point interactions in 1D. Our
approach differs from previous ones because it is based only on physical
quantities, namely, the scattering coefficients, and , to construct .
Renormalization or particular mathematical prescriptions are not invoked. The
simple formulation of the method makes it easy to extend to more general
contexts, such as for lattices of general point interactions; on a line; on
a half-line; under periodic boundary conditions; and confined in a box.Comment: Revtex, 9 pages, 3 EPS figures. To be published in PR
Diagnosis of dynamitron accelerator faults through the observation of narrow nuclear resonances
Narrow nuclear resonances, initially used to calibrate the energy of the Birmingham Radiation Centre 3MV Dynamitron, have proved useful in discovering and identifying accelerator fault conditions. Short-term energy stability (over e few minutes) of a few tens of eV is common. However, variations of many kV occur for several days before the failure of a thermionic rectifier. The beam energy ripple, as reflected in the full width at half maximum of narrow (p,γ) resonances, has also been analysed to indicate the frequency causing the bulk of the ripple, thus often leading to the identification and correction of faults. Typical faults usually produce increased ripple at either the 50 Hz or 128 kHz oscillator frequency
Can forest management based on natural disturbances maintain ecological resilience?
Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry
The dielectric properties of alpha-MgH2 are investigated in the photon energy
range between 1 and 6.5 eV. For this purpose, a novel sample configuration and
experimental setup are developed that allow both optical transmission and
ellipsometric measurements of a transparent thin film in equilibrium with
hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator
with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about
80% over the whole visible spectrum. The dielectric function found in this work
confirms very recent band structure calculations using the GW approximation by
Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a
cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table
Measurement of the CP-Violating Asymmetry Amplitude sin2
We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes
Factors Affecting Initial Humoral Immune Response to SARS-CoV-2 Vaccines Among Patients With Inflammatory Bowel Diseases
INTRODUCTION: Although an additional coronavirus disease 2019 vaccine dose for immunocompromised persons has been recommended in some countries, further data to guide vaccination strategies for patients with inflammatory bowel disease (IBD) are urgently needed. We sought to identify factors affecting initial humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines among patients with IBD. METHODS: In this prospective cohort of SARS-CoV-2 immunized patients with IBD, we evaluated associations between participant age, sex, vaccine type, medication use, and the presence of a detectable antireceptor binding domain antibody and quantitative antibody level. RESULTS: In total, 1,909 participants were included (1,123, 692, and 94 received BNT162b2, mRNA-1273, and Ad26.COV2.S, respectively) of whom 96% achieved a positive antibody response. On multivariable analysis, factors associated with lack of antibody response were older age (P = 0.043), BNT162b2 vs mRNA-1273 (odds ratio [OR] 2.1, 95% confidence interval [CI] 1.0-3.9), and combination therapy with anti-TNF and 6MP, azathioprine, or methotrexate (OR 4.2, 95% CI 2.4-7.3). The use of 5-aminosalicylate or sulfasalazine (OR 0.3, 95% CI 0.1-0.8) and ustekinumab (OR 0.2, 95% CI 0.05-0.8) was associated with decreased odds of lacking antibody response. DISCUSSION: Most patients with IBD mount an initial response to SARS-CoV-2 vaccination; however, older patients and those treated with anti-TNF and immunomodulator have blunted responses and may benefit the most from an additional vaccine dose. Patients treated with other classes of immunosuppressive medications have more robust initial immune responses to vaccination. These data should inform key decisions about patient selection for additional coronavirus disease 2019 vaccine doses in patients with IBD
- …
