453 research outputs found

    Quantifying fenbendazole and its metabolites in self-medicating wild red grouse Lagopus lagopus scoticus using an HPLC–MS–MS approach

    Get PDF
    On red grouse estates in the UK the nematode parasite Trichostrongylus tenuis is often controlled by application of grit medicated with the anthelmintic fenbendazole (FBZ). To date, assessment of the efficacy has been inhibited by the inability to quantify uptake of FBZ by the birds. We have developed a simple and sensitive HPLC–MS–MS method for detecting and quantifying FBZ and its metabolites from a 300 mg sample of red grouse liver. This method could be used to improve the efficacy of medicated grit treatment by allowing the identification of conditions and application methods that optimize the uptake of FBZ. With the necessary modifications, our method will also be applicable to other wildlife species where self-medication is used for parasite control

    The diversity, evolution and ecology of Salmonella in venomous snakes

    Get PDF
    BACKGROUND: Reptile-associated Salmonella bacteria are a major, but often neglected cause of both gastrointestinal and bloodstream infection in humans globally. The diversity of Salmonella enterica has not yet been determined in venomous snakes, however other ectothermic animals have been reported to carry a broad range of Salmonella bacteria. We investigated the prevalence and diversity of Salmonella in a collection of venomous snakes and non-venomous reptiles. METHODOLOGY/PRINCIPLE FINDINGS: We used a combination of selective enrichment techniques to establish a unique dataset of reptilian isolates to study Salmonella enterica species-level evolution and ecology and used whole-genome sequencing to investigate the relatedness of phylogenetic groups. We observed that 91% of venomous snakes carried Salmonella, and found that a diverse range of serovars (n = 58) were carried by reptiles. The Salmonella serovars belonged to four of the six Salmonella enterica subspecies: diarizonae, enterica, houtanae and salamae. Subspecies enterica isolates were distributed among two distinct phylogenetic clusters, previously described as clade A (52%) and clade B (48%). We identified metabolic differences between S. diarizonae, S. enterica clade A and clade B involving growth on lactose, tartaric acid, dulcitol, myo-inositol and allantoin. SIGNIFICANCE: We present the first whole genome-based comparative study of the Salmonella bacteria that colonise venomous and non-venomous reptiles and shed new light on Salmonella evolution. Venomous snakes examined in this study carried a broad range of Salmonella, including serovars which have been associated with disease in humans such as S. Enteritidis. The findings raise the possibility that venomous snakes could be a reservoir for Salmonella serovars associated with human salmonellosis

    Endogenous Risks and Learning in Climate Change Decision Analysis

    Get PDF
    We analyze the effects of risks and learning on climate change decisions. A two-stage, dynamic, climate change stabilization problem is formulated. The explicit incorporation of ex-post learning induces risk aversion among ex-ante decisions, which is characterized in linear models by VaR- and CVaR-type risk measures. Combined with explicit introduction of "safety" constraints, it creates a "hit-or-miss" type decision-making situation and shows that, even in linear models, learning may lead to either less-or more restrictive ex-ante emission reductions. We analyze stylized elements of the model in order to identify the key factors driving outcomes, in particular, the critical role of quantiles of probability distributions characterizing key uncertainties

    CURIOS: Connecting Community Heritage through Linked Data

    Get PDF
    The CURIOS project explores how digital archives for rural community heritage groups can be made more sustainable so that volunteer members can maintain a lasting digital presence. It is developing software tools to help remote rural communities to collaboratively maintain and present information about their cultural heritage. The objective is to investigate the use of semantic web/linked data technology to build a general, flexible and “future proof” software platform that could help such projects to develop digital archives and to be sustainable over time. As an interdisciplinary project we aim to synthesise a narrative that draws from both social science and computer science perspectives by critically reflecting upon the novel approach taken and the on-going results that are being produced

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    SPLUNC1 degradation by the cystic fibrosis mucosal environment drives airway surface liquid dehydration

    Get PDF
    The multi-organ disease cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR) that lead to diminished transepithelial anion transport. CF lungs are characterised by airway surface liquid (ASL) dehydration, chronic infection/inflammation and neutrophilia. Dysfunctional CFTR may upregulate the epithelial Na+ channel (ENaC), further exacerbating dehydration. We previously demonstrated that short palate lung and nasal epithelial clone 1 (SPLUNC1) negatively regulates ENaC in normal airway epithelia. Here, we used pulmonary tissue samples, sputum and human bronchial epithelial cells (HBECs) to determine whether SPLUNC1 could regulate ENaC in a CF-like environment. We found reduced endogenous SPLUNC1 in CF secretions, and rapid degradation of recombinant SPLUNC1 (rSPLUNC1) by CF secretions. Normal sputum, containing SPLUNC1 and SPLUNC1-derived peptides, inhibited ENaC in both normal and CF HBECs. Conversely, CF sputum activated ENaC, and rSPLUNC1 could not reverse this phenomenon. Additionally, we observed upregulation of ENaC protein levels in human CF bronchi. Unlike SPLUNC1, the novel SPLUNC1-derived peptide SPX-101 resisted protease degradation, bound apically to HBECs, inhibited ENaC and prevented ASL dehydration following extended pre-incubation with CF sputum. Our data indicate that CF mucosal secretions drive ASL hyperabsorption and that protease-resistant peptides, e.g. SPX-101, can reverse this effect to rehydrate CF ASL

    A search for prompt lepton-jets in pp collisions at root s=8 TeV with the ATLAS detector

    Get PDF
    A search is presented for a new, light boson with a mass of about 1 GeV and decaying promptly to jets of collimated electrons and/or muons (lepton-jets). The analysis is performed with 20.3 fb−1 of data collected by the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a centre-of-mass energy of 8 TeV. Events are required to contain at least two lepton-jets. This study finds no statistically significant deviation from predictions of the Standard Model and places 95% confidence-level upper limits on the contribution of new phenomena beyond the SM, incuding SUSY-portal and Higgs-portal models, on the number of events with lepton-jets.We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEADSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ. S, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom
    corecore