66 research outputs found

    The Entamoeba lysine and glutamic acid rich protein (KERP1) virulence factor gene is present in the genomes of Entamoeba nuttalli, Entamoeba dispar and Entamoeba moshkovskii

    Get PDF
    The lysine and glutamic acid rich protein KERP1 is a cell surface-expressed virulence factor in the human pathogen Entamoeba histolytica. It was originally suggested that the gene was absent from the related, avirulent human commensal Entamoeba dispar, an absence which would be relevant to the differential virulence of these species. Here, the gene is shown to be present in E. dispar, and its sequence is presented, as well as in a virulent parasite of macaques, Entamoeba nuttalli, and the primarily free living, opportunistically parasitic Entamoeba moshkovskii

    DNA barcoding of nematodes using the MinION

    Get PDF
    Many nematode species are parasitic and threaten the health of plants and animals, including humans, on a global scale. Advances in DNA sequencing techniques have allowed for the rapid and accurate identification of many organisms including nematodes. However, the steps taken from sample collection in the field to molecular analysis and identification can take many days and depend on access to both immovable equipment and a specialized laboratory. Here, we present a protocol to genetically identify nematodes using 18S SSU rRNA sequencing using the MinION, a portable third generation sequencer, and proof that it is possible to perform all the molecular preparations on a fully portable molecular biology lab – the Bentolab. We show that both parasitic and free-living nematode species (Anisakis simplex, Panagrellus redivivus, Turbatrix aceti, and Caenorhabditis elegans) can be identified with a 96–100% accuracy compared to Sanger sequencing, requiring only 10–15 min of sequencing. This protocol is an essential first step toward genetically identifying nematodes in the field from complex natural environments (such as feces, soil, or marine sediments). This increased accessibility could in turn improve global information of nematode presence and distribution, aiding near-real-time global biomonitoring

    Morphotypes of the common beadlet anemone Actinia equina (L.) are genetically distinct

    Get PDF
    Anemones of the genus Actinia are ecologically important and familiar organisms on many rocky shores. However, this genus is taxonomically problematical and prior evidence suggests that the North Atlantic beadlet anemone, Actinia equina, may actually consist of a number of cryptic species. Previous genetic work has been largely limited to allozyme electrophoresis and there remains a dearth of genetic resources with which to study this genus. Mitochondrial DNA sequencing may help to clarify the taxonomy of Actinia. Here, the complete mitochondrial genome of the beadlet anemone Actinia equina (Cnidaria: Anthozoa: Actinaria: Actiniidae) is shown to be 20,690 bp in length and to contain the standard complement of Cnidarian features including 13 protein coding genes, two rRNA genes, two tRNAs and two Group I introns, one with an in-frame truncated homing endonuclease gene open reading frame. However, amplification and sequencing of the standard mtDNA barcoding region of the cytochrome oxidase I gene revealed only two haplotypes, differing by a single base pair, in widely geographically separated A. equina and its congener A. prasina. COI barcoding shows that whilst A. equina and A. prasina share the common mtDNA haplotype, haplotype frequency differed significantly between A. equina with red/orange pedal discs and those with green pedal discs, consistent with the hypothesis that these morphotypes represent incipient species

    Characterization of the glutathione S-transferase genes in the sand flies Phlebotomus papatasi and Lutzomyia longipalpis shows expansion of the novel glutathione S-transferase xi (X) class

    Get PDF
    Leishmaniasis control often relies upon insecticidal control of phlebotomine sandfly vector populations. Such methods are vulnerable to the evolution of insecticide resistance via a range of molecular mechanisms. There is evidence that two major resistance mechanisms, target site insensitivity and metabolic resistance, have evolved in some sandfly populations and further genetic characterization of resistance would be useful to understand and combat it. To facilitate the study of the mechanisms of metabolic resistance, here we improved the annotation and characterized a major detoxification gene family, the glutathione-s-transferases (GST), in the genomes of two sand fly species: Phlebotomus papatasi and Lutzomyia longipalpis. The compositions of the GST gene family differ markedly from those of Aedes and Anopheles mosquitoes. Most strikingly, the xi (X) class of GSTs appears to have expanded in both sand fly genomes. Our results provide a basis for further studies of metabolic resistance mechanisms in these important disease vector species

    Malaria in the 'Omics Era'.

    Get PDF
    Genomics has revolutionised the study of the biology of parasitic diseases. The first Eukaryotic parasite to have its genome sequenced was the malaria parasite Plasmodium falciparum. Since then, Plasmodium genomics has continued to lead the way in the study of the genome biology of parasites, both in breadth-the number of Plasmodium species' genomes sequenced-and in depth-massive-scale genome re-sequencing of several key species. Here, we review some of the insights into the biology, evolution and population genetics of Plasmodium gained from genome sequencing, and look at potential new avenues in the future genome-scale study of its biology

    A differential expression of pyrethroid resistance genes in the malaria vector Anopheles funestus across Uganda is associated with patterns of gene flow.

    Get PDF
    BACKGROUND: Insecticide resistance is challenging the effectiveness of insecticide-based control interventions to reduce malaria burden in Africa. Understanding the molecular basis of insecticides resistance and patterns of gene flow in major malaria vectors such as Anopheles funestus are important steps for designing effective resistance management strategies. Here, we investigated the association between patterns of genetic structure and expression profiles of genes involved in the pyrethroid resistance in An. funestus across Uganda and neighboring Kenya. METHODS: Blood-fed mosquitoes An. funestus were collected across the four localities in Uganda and neighboring Kenya. A Microarray-based genome-wide transcription analysis was performed to identify the set of genes associated with permethrin resistance. 17 microsatellites markers were genotyped and used to establish patterns of genetic differentiation. RESULTS: Microarray-based genome-wide transcription profiling of pyrethroid resistance in four locations across Uganda (Arua, Bulambuli, Lira, and Tororo) and Kenya (Kisumu) revealed that resistance was mainly driven by metabolic resistance. The most commonly up-regulated genes in pyrethroid resistance mosquitoes include cytochrome P450s (CYP9K1, CYP6M7, CYP4H18, CYP4H17, CYP4C36). However, expression levels of key genes vary geographically such as the P450 CYP6M7 [Fold-change (FC) = 115.8 (Arua) vs 24.05 (Tororo) and 16.9 (Kisumu)]. In addition, several genes from other families were also over-expressed including Glutathione S-transferases (GSTs), carboxylesterases, trypsin, glycogenin, and nucleotide binding protein which probably contribute to insecticide resistance across Uganda and Kenya. Genotyping of 17 microsatellite loci in the five locations provided evidence that a geographical shift in the resistance mechanisms could be associated with patterns of population structure throughout East Africa. Genetic and population structure analyses indicated significant genetic differentiation between Arua and other localities (FST>0.03) and revealed a barrier to gene flow between Arua and other areas, possibly associated with Rift Valley. CONCLUSION: The correlation between patterns of genetic structure and variation in gene expression could be used to inform future interventions especially as new insecticides are gradually introduced

    The Colorectal Cancer Microbiota Alter Their Transcriptome To Adapt to the Acidity, Reactive Oxygen Species, and Metabolite Availability of Gut Microenvironments.

    Get PDF
    The gut microbiome is implicated in the pathology of colorectal cancer (CRC). However, the mechanisms by which the microbiota actively contribute to disease onset and progression remain elusive. In this pilot study, we sequenced fecal metatranscriptomes of 10 non-CRC and 10 CRC patient gut microbiomes and conducted differential gene expression analyses to assess any changed functionality in disease. We report that oxidative stress responses were the dominant activity across cohorts, an overlooked protective housekeeping role of the human gut microbiome. However, expression of hydrogen peroxide and nitric oxide-scavenging genes was diminished and augmented, respectively, positing that these regulated microbial responses have implications for CRC pathology. CRC microbes enhanced expression of genes for host colonization, biofilm formation, genetic exchange, virulence determinants, antibiotic, and acid resistances. Moreover, microbes promoted transcription of genes involved in metabolism of several beneficial metabolites, suggesting their contribution to patient metabolite deficiencies previously solely attributed to tumor cells. We showed in vitro that expression of genes involved in amino acid-dependent acid resistance mechanisms of meta-gut Escherichia coli responded differently to acid, salt, and oxidative pressures under aerobic conditions. These responses were mostly dictated by the host health status of origin of the microbiota, suggesting their exposure to fundamentally different gut conditions. These findings for the first time highlight mechanisms by which the gut microbiota can either protect against or drive colorectal cancer and provide insights into the cancerous gut environment that drives functional characteristics of the microbiome. IMPORTANCE The human gut microbiota has the genetic potential to drive colorectal cancer onset and progression; however, the expression of this genetic potential during the disease has not been investigated. We found that microbial expression of genes that detoxify DNA-damaging reactive oxygen species, which drive colorectal cancer, is compromised in cancer. We observed a greater activation of expression of genes involved in virulence, host colonization, exchange of genetic material, metabolite utilization, defense against antibiotics, and environmental pressures. Culturing gut Escherichia coli of cancerous and noncancerous metamicrobiota revealed different regulatory responses of amino acid-dependent acid resistance mechanisms in a health-dependent manner under environmental acid, oxidative, and osmotic pressures. Here, for the first time, we demonstrate that the activity of microbial genomes is regulated by the health status of the gut in vivo and in vitro and provides new insights for shifts in microbial gene expression in colorectal cancer

    Preventive antibiotic treatment of calves: emergence of dysbiosis causing propagation of obese state-associated and mobile multidrug resistance-carrying bacteria

    Get PDF
    In agriculture, antibiotics are used for the treatment and prevention of livestock disease. Antibiotics perturb the bacterial gut composition but the extent of these changes and potential consequences for animal and human health is still debated. Six calves were housed in a controlled environment. Three animals received an injection of the antibiotic florfenicol (Nuflor), and three received no treatment. Faecal samples were collected at 0, 3 and 7 days, and bacterial communities were profiled to assess the impact of a therapy on the gut microbiota. Phylogenetic analysis (16S‐rDNA) established that at day 7, antibiotic‐treated microbiota showed a 10‐fold increase in facultative anaerobic Escherichia spp, a signature of imbalanced microbiota, dysbiosis. The antibiotic resistome showed a high background of antibiotic resistance genes, which did not significantly change in response to florfenicol. However, the maintenance of Escherichia coli plasmid‐encoded quinolone, oqxB and propagation of mcr‐2, and colistin resistance genes were observed and confirmed by Sanger sequencing. The microbiota of treated animals was enriched with energy harvesting bacteria, common to obese microbial communities. We propose that antibiotic treatment of healthy animals leads to unbalanced, disease‐ and obese‐related microbiota that promotes growth of E. coli carrying resistance genes on mobile elements, potentially increasing the risk of transmission of antibiotic resistant bacteria to humans

    The genome of the sea anemone Actinia equina (L.): Meiotic toolkit genes and the question of sexual reproduction.

    Get PDF
    The beadlet anemone Actinia equina (L.) (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most familiar organisms of the North European intertidal zone. Once considered a single, morphologically variable species across northern Europe, it is now recognised as one member of a variable species complex. Previous studies of distribution, aggression, allozymes and mitochondrial DNA suggest that the diversity in form and colour within A. equina may hide still unrecognised species diversity. To empower further study of A. equina population genetics and systematics, we sequenced (PacBio Sequel) the genome of a single A. equina individual to produce a high-quality genome assembly (contig N50 = 492,607 bp, 1485 contigs, number of protein coding genes = 47,671, 97% BUSCO completeness). There is debate as to whether A. equina reproduces solely asexually, since no reliable, consistent evidence of sexual reproduction has been found. To gain further insight, we examined the genome for evidence of a 'meiotic toolkit' - genes believed to be found consistently in sexually reproducing organisms - and demonstrate that the A. equina genome appears not to have this full complement. Additionally, Smudgeplot analysis, coupled with high haplotype diversity, indicates this genome assembly to be of ambiguous ploidy, suggesting that A. equina may not be diploid. The suggested polyploid nature of this species coupled with the deficiency in meiotic toolkit genes, indicates that further field and laboratory studies of this species is warranted to understand how this species reproduces and what role ploidy may play in speciation within this speciose genus
    corecore