52 research outputs found
A Soluble Phase Field Model
The kinetics of an initially undercooled solid-liquid melt is studied by
means of a generalized Phase Field model, which describes the dynamics of an
ordering non-conserved field phi (e.g. solid-liquid order parameter) coupled to
a conserved field (e.g. thermal field). After obtaining the rules governing the
evolution process, by means of analytical arguments, we present a discussion of
the asymptotic time-dependent solutions. The full solutions of the exact
self-consistent equations for the model are also obtained and compared with
computer simulation results. In addition, in order to check the validity of the
present model we confronted its predictions against those of the standard Phase
field model and found reasonable agreement. Interestingly, we find that the
system relaxes towards a mixed phase, depending on the average value of the
conserved field, i.e. on the initial condition. Such a phase is characterized
by large fluctuations of the phi field.Comment: 13 pages, 8 figures, RevTeX 3.1, submitted to Physical Review
Transitions between Inherent Structures in Water
The energy landscape approach has been useful to help understand the dynamic
properties of supercooled liquids and the connection between these properties
and thermodynamics. The analysis in numerical models of the inherent structure
(IS) trajectories -- the set of local minima visited by the liquid -- offers
the possibility of filtering out the vibrational component of the motion of the
system on the potential energy surface and thereby resolving the slow
structural component more efficiently. Here we report an analysis of an IS
trajectory for a widely-studied water model, focusing on the changes in
hydrogen bond connectivity that give rise to many IS separated by relatively
small energy barriers. We find that while the system \emph{travels} through
these IS, the structure of the bond network continuously modifies, exchanging
linear bonds for bifurcated bonds and usually reversing the exchange to return
to nearly the same initial configuration. For the 216 molecule system we
investigate, the time scale of these transitions is as small as the simulation
time scale ( fs). Hence for water, the transitions between each of
these IS is relatively small and eventual relaxation of the system occurs only
by many of these transitions. We find that during IS changes, the molecules
with the greatest displacements move in small ``clusters'' of 1-10 molecules
with displacements of nm, not unlike simpler liquids.
However, for water these clusters appear to be somewhat more branched than the
linear ``string-like'' clusters formed in a supercooled Lennar d-Jones system
found by Glotzer and her collaborators.Comment: accepted in PR
Spatially heterogeneous ages in glassy dynamics
We construct a framework for the study of fluctuations in the nonequilibrium
relaxation of glassy systems with and without quenched disorder. We study two
types of two-time local correlators with the aim of characterizing the
heterogeneous evolution: in one case we average the local correlators over
histories of the thermal noise, in the other case we simply coarse-grain the
local correlators. We explain why the former describe the fingerprint of
quenched disorder when it exists, while the latter are linked to noise-induced
mesoscopic fluctuations. We predict constraints on the pdfs of the fluctuations
of the coarse-grained quantities. We show that locally defined correlations and
responses are connected by a generalized local out-of-equilibrium
fluctuation-dissipation relation. We argue that large-size heterogeneities in
the age of the system survive in the long-time limit. The invariance of the
theory under reparametrizations of time underlies these results. We relate the
pdfs of local coarse-grained quantities and the theory of dynamic random
manifolds. We define a two-time dependent correlation length from the spatial
decay of the fluctuations in the two-time local functions. We present numerical
tests performed on disordered spin models in finite and infinite dimensions.
Finally, we explain how these ideas can be applied to the analysis of the
dynamics of other glassy systems that can be either spin models without
disorder or atomic and molecular glassy systems.Comment: 47 pages, 60 Fig
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
Above ground detection and interpretation of transient signals on underground power distribution systems
- …
