6,717 research outputs found
Teaching Physics Using Virtual Reality
We present an investigation of game-like simulations for physics teaching. We
report on the effectiveness of the interactive simulation "Real Time
Relativity" for learning special relativity. We argue that the simulation not
only enhances traditional learning, but also enables new types of learning that
challenge the traditional curriculum. The lessons drawn from this work are
being applied to the development of a simulation for enhancing the learning of
quantum mechanics
Carrier-envelope phase dependence in single-cycle laser pulse propagation with the inclusion of counter-rotating terms
We focus on the propagation properties of a single-cycle laser pulse through
a two-level medium by numerically solving the full-wave Maxwell-Bloch
equations. The counter-rotating terms in the spontaneous emission damping are
included such that the equations of motion are slightly different from the
conventional Bloch equations. The counter-rotating terms can considerably
suppress the broadening of the pulse envelope and the decrease of the group
velocity rooted from dispersion. Furthermore, for incident single-cycle pulses
with envelope area 4, the time-delay of the generated soliton pulse from
the main pulse depends crucially on the carrier-envelope phase of the incident
pulse. This can be utilized to determine the carrier-envelope phase of the
single-cycle laser pulse.Comment: 6 pages, 5 figure
Estimating Multiattribute Spatial Choice Models
In this paper, an interactive computer program for estimating the parameters of spatial choice models with multiattribute utilities is presented. The models to be calibrated may be unconstrained, singly constrained, or doubly constrained random utility choice or entropy-maximizing interaction models. Utilities may be associated with choice alternatives (zones) or with the choices themselves (trips). The program maximizes the likelihood of the choice matrix (trip table) given observed choices (trips) using a combination of gradient search and Newton-Raphson iteration methods.
The paper contains a specification of the range of models that can be calibrated with the program and a description of its solution algorithm and organization, as well as an illustrative application and a listing of the source code
Self-consistent calculation of metamaterials with gain
We present a computational scheme allowing for a self-consistent treatment of
a dispersive metallic photonic metamaterial coupled to a gain material
incorporated into the nanostructure. The gain is described by a generic
four-level system. A critical pumping rate exists for compensating the loss of
the metamaterial. Nonlinearities arise due to gain depletion beyond a certain
critical strength of a test field. Transmission, reflection, and absorption
data as well as the retrieved effective parameters are presented for a lattice
of resonant square cylinders embedded in layers of gain material and split ring
resonators with gain material embedded into the gaps.Comment: 5 pages, 6 figure
Aspects of Urban Decline: Experiments with a Multilevel Economic- Demographic Model for the Dortmund Region
In this paper, selected results of a multilevel dynamic simulation model of the economic and demographic development in the urban region of Dortmund, FRG, are presented. The model simulates location decisions of industry, residential developers, and households, the resulting migration and commuting patterns, the land use development, and the impacts of public policies in the fields of industrial development, housing, and infrastructure.
In particular, the paper illustrates the capability of the model to capture not only urban growth processes, but also processes of urban decline. For this purpose, first the mechanisms which control spatial growth, decline, or redistribution of activities in the model are outlined. Second, it is demonstrated how the model reproduces the general pattern of past spatial development in the region. Third, results of simulations covering a wide range of potential over all economic and demographic development in the region are discussed
Twisted split-ring-resonator photonic metamaterial with huge optical activity
Coupled split-ring-resonator metamaterials have previously been shown to
exhibit large coupling effects, which are a prerequisite for obtaining large
effective optical activity. By a suitable lateral arrangement of these building
blocks, we completely eliminate linear birefringence and obtain pure optical
activity and connected circular optical dichroism. Experiments at around
100-THz frequency and corresponding modeling are in good agreement. Rotation
angles of about 30 degrees for 205nm sample thickness are derived.Comment: 6 pages, 4 figure
VADA: A transformation-based system for variable dependence analysis
Variable dependence is an analysis problem in which the aim is to determine the set of input variables that can affect the values stored in a chosen set of intermediate program variables. This paper shows the relationship between the variable dependence analysis problem and slicing and describes VADA, a system that implements variable dependence analysis. In order to cover the full range of C constructs and features, a transformation to a core language is employed Thus, the full analysis is required only for the core language, which is relatively simple. This reduces the overall effort required for dependency analysis. The transformations used need preserve only the variable dependence relation, and therefore need not be meaning preserving in the traditional sense. The paper describes how this relaxed meaning further simplifies the transformation phase of the approach. Finally, the results of an empirical study into the performance of the system are presented
Product recognition in store shelves as a sub-graph isomorphism problem
The arrangement of products in store shelves is carefully planned to maximize
sales and keep customers happy. However, verifying compliance of real shelves
to the ideal layout is a costly task routinely performed by the store
personnel. In this paper, we propose a computer vision pipeline to recognize
products on shelves and verify compliance to the planned layout. We deploy
local invariant features together with a novel formulation of the product
recognition problem as a sub-graph isomorphism between the items appearing in
the given image and the ideal layout. This allows for auto-localizing the given
image within the aisle or store and improving recognition dramatically.Comment: Slightly extended version of the paper accepted at ICIAP 2017. More
information @project_page -->
http://vision.disi.unibo.it/index.php?option=com_content&view=article&id=111&catid=7
Single-cycle gap soliton in a subwavelength structure
We demonstrate that a single sub-cycle optical pulse can be generated when a
pulse with a few optical cycles penetrates through resonant two-level dense
media with a subwavelength structure. The single-cycle gap soliton phenomenon
in the full Maxwell-Bloch equations without the frame of slowly varying
envelope and rotating wave approximations is observed. Our study shows that the
subwavelength structure can be used to suppress the frequency shift caused by
intrapulse four-wave mixing in continuous media and supports the formation of
single-cycle gap solitons even in the case when the structure period breaks the
Bragg condition. This suggests a way toward shortening high-intensity laser
fields to few- and even single-cycle pulse durations.Comment: 4 pages, 6 figure
- …
