1,074 research outputs found
A time-dependent Tsirelson's bound from limits on the rate of information gain in quantum systems
We consider the problem of distinguishing between a set of arbitrary quantum
states in a setting in which the time available to perform the measurement is
limited. We provide simple upper bounds on how well we can perform state
discrimination in a given time as a function of either the average energy or
the range of energies available during the measurement. We exhibit a specific
strategy that nearly attains this bound. Finally, we consider several
applications of our result. First, we obtain a time-dependent Tsirelson's bound
that limits the extent of the Bell inequality violation that can be in
principle be demonstrated in a given time t. Second, we obtain a
Margolus-Levitin type bound when considering the special case of distinguishing
orthogonal pure states.Comment: 15 pages, revtex, 1 figur
Local Quantum Measurement and No-Signaling Imply Quantum Correlations
We show that, assuming that quantum mechanics holds locally, the finite speed
of information is the principle that limits all possible correlations between
distant parties to be quantum mechanical as well. Local quantum mechanics means
that a Hilbert space is assigned to each party, and then all local
positive-operator-valued measurements are (in principle) available; however,
the joint system is not necessarily described by a Hilbert space. In
particular, we do not assume the tensor product formalism between the joint
systems. Our result shows that if any experiment would give nonlocal
correlations beyond quantum mechanics, quantum theory would be invalidated even
locally.Comment: Published version. 5 pages, 1 figure
Notes on entropic characteristics of quantum channels
One of most important issues in quantum information theory concerns
transmission of information through noisy quantum channels. We discuss few
channel characteristics expressed by means of generalized entropies. Such
characteristics can often be dealt in line with more usual treatment based on
the von Neumann entropies. For any channel, we show that the -average output
entropy of degree is bounded from above by the -entropy of the
input density matrix. Concavity properties of the -entropy exchange are
considered. Fano type quantum bounds on the -entropy exchange are
derived. We also give upper bounds on the map -entropies in terms of the
output entropy, corresponding to the completely mixed input.Comment: 10 pages, no figures. The statement of Proposition 1 is explicitly
illustrated with the depolarizing channel. The bibliography is extended and
updated. More explanations. To be published in Cent. Eur. J. Phy
Using post-measurement information in state discrimination
We consider a special form of state discrimination in which after the
measurement we are given additional information that may help us identify the
state. This task plays a central role in the analysis of quantum cryptographic
protocols in the noisy-storage model, where the identity of the state
corresponds to a certain bit string, and the additional information is
typically a choice of encoding that is initially unknown to the cheating party.
We first provide simple optimality conditions for measurements for any such
problem, and show upper and lower bounds on the success probability. For a
certain class of problems, we furthermore provide tight bounds on how useful
post-measurement information can be. In particular, we show that for this class
finding the optimal measurement for the task of state discrimination with
post-measurement information does in fact reduce to solving a different problem
of state discrimination without such information. However, we show that for the
corresponding classical state discrimination problems with post-measurement
information such a reduction is impossible, by relating the success probability
to the violation of Bell inequalities. This suggests the usefulness of
post-measurement information as another feature that distinguishes the
classical from a quantum world.Comment: 10 pages, 4 figures, revtex, v2: published version, minor change
Quantum Network Coding
Since quantum information is continuous, its handling is sometimes
surprisingly harder than the classical counterpart. A typical example is
cloning; making a copy of digital information is straightforward but it is not
possible exactly for quantum information. The question in this paper is whether
or not quantum network coding is possible. Its classical counterpart is another
good example to show that digital information flow can be done much more
efficiently than conventional (say, liquid) flow.
Our answer to the question is similar to the case of cloning, namely, it is
shown that quantum network coding is possible if approximation is allowed, by
using a simple network model called Butterfly. In this network, there are two
flow paths, s_1 to t_1 and s_2 to t_2, which shares a single bottleneck channel
of capacity one. In the classical case, we can send two bits simultaneously,
one for each path, in spite of the bottleneck. Our results for quantum network
coding include: (i) We can send any quantum state |psi_1> from s_1 to t_1 and
|psi_2> from s_2 to t_2 simultaneously with a fidelity strictly greater than
1/2. (ii) If one of |psi_1> and |psi_2> is classical, then the fidelity can be
improved to 2/3. (iii) Similar improvement is also possible if |psi_1> and
|psi_2> are restricted to only a finite number of (previously known) states.
(iv) Several impossibility results including the general upper bound of the
fidelity are also given.Comment: 27pages, 11figures. The 12page version will appear in 24th
International Symposium on Theoretical Aspects of Computer Science (STACS
2007
Implementation of two-party protocols in the noisy-storage model
The noisy-storage model allows the implementation of secure two-party
protocols under the sole assumption that no large-scale reliable quantum
storage is available to the cheating party. No quantum storage is thereby
required for the honest parties. Examples of such protocols include bit
commitment, oblivious transfer and secure identification. Here, we provide a
guideline for the practical implementation of such protocols. In particular, we
analyze security in a practical setting where the honest parties themselves are
unable to perform perfect operations and need to deal with practical problems
such as errors during transmission and detector inefficiencies. We provide
explicit security parameters for two different experimental setups using weak
coherent, and parametric down conversion sources. In addition, we analyze a
modification of the protocols based on decoy states.Comment: 41 pages, 33 figures, this is a companion paper to arXiv:0906.1030
considering practical aspects, v2: published version, title changed in
accordance with PRA guideline
Dynamics of Gaseous Disks in a Non-axisymmetric Dark Halo
The dynamics of a galactic disk in a non-axisymmetric (triaxial) dark halo is
studied in detail using high-resolution, numerical, hydrodynamical models. A
long-lived, two-armed spiral pattern is generated for a wide range of
parameters. The spiral structure is global, and the number of turns can be two
or three, depending on the model parameters. The morphology and kinematics of
the spiral pattern are studied as functions of the halo and disk parameters.
The spiral structure rotates slowly, and its angular velocity varies
quasi-periodically. Models with differing relative halo masses, halo semi-axis
ratios, distributions of matter in the disk, Mach numbers in the gaseous
component, and angular rotational velocities of their halos are considered.Comment: 22 pages, 11 figure
Steps in the Negative-Differential-Conductivity Regime of a Superconductor
Current-voltage characteristics were measured in the mixed state of
Y1Ba2Cu3O(7-delta) superconducting films in the regime where flux flow becomes
unstable and the differential conductivity dj/dE becomes negative. Under
conditions where its negative slope is steep, the j(E) curve develops a
pronounced staircase like pattern. We attribute the steps in j(E) to the
formation of a dynamical phase consisting of the succesive nucleation of
quantized distortions in the local vortex velocity and flux distribution within
the moving flux matter.Comment: 5 pages, 3 figure
Strong Influence of the diffuse component on the lattice dynamics in Pb(MgNb)O
The temperature and zone dependence of the lattice dynamics in
Pb(MgNb)O is characterized using neutron inelastic
scattering. A strong correlation between the diffuse and phonon scattering is
measured. The lattice dynamics in Brillouin zones where the diffuse scattering
is strong is observed to display qualitatively different behavior than those
zones where the diffuse scattering is weak. In the (220) and (200) zones, where
there is a weak diffuse component, the dynamics are well described by coupled
harmonic oscillators. Compared with SrTiO, the coupling is weak and
isotropic, resulting in only a small transfer of spectral weight from one mode
to another. A comparison of the scattering in these zones to the (110) zone,
where a strong diffuse component is present, reveals a strong coupling of the
diffuse (or central) component to the acoustic mode. We speculate that the
coupling to the central peak is the reason for several recent conflicting
interpretations of the lattice dynamics based on data from zones with a strong
diffuse component.Comment: 7 pages, 7 figure
Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots
We report on the impulsive generation of coherent optical phonons in
CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump probe
experiments using femtosecond laser pulses were performed by tuning the laser
central energy to resonate with the absorption edge of the nanocrystals. We
identify two longitudinal optical phonons, one longitudinal acoustic phonon and
a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the
optical phonons as a function of the laser central energy exhibits a resonance
that is well described by a model based on impulsive stimulated Raman
scattering. The phases of the coherent phonons reveal coupling between
different modes. At low power density excitations, the frequency of the optical
coherent phonons deviates from values obtained from spontaneous Raman
scattering. This behavior is ascribed to the presence of electronic impurity
states which modify the nanocrystal dielectric function and, thereby, the
frequency of the infrared-active phonons
- …
