1,074 research outputs found

    A time-dependent Tsirelson's bound from limits on the rate of information gain in quantum systems

    Full text link
    We consider the problem of distinguishing between a set of arbitrary quantum states in a setting in which the time available to perform the measurement is limited. We provide simple upper bounds on how well we can perform state discrimination in a given time as a function of either the average energy or the range of energies available during the measurement. We exhibit a specific strategy that nearly attains this bound. Finally, we consider several applications of our result. First, we obtain a time-dependent Tsirelson's bound that limits the extent of the Bell inequality violation that can be in principle be demonstrated in a given time t. Second, we obtain a Margolus-Levitin type bound when considering the special case of distinguishing orthogonal pure states.Comment: 15 pages, revtex, 1 figur

    Local Quantum Measurement and No-Signaling Imply Quantum Correlations

    Get PDF
    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.Comment: Published version. 5 pages, 1 figure

    Notes on entropic characteristics of quantum channels

    Full text link
    One of most important issues in quantum information theory concerns transmission of information through noisy quantum channels. We discuss few channel characteristics expressed by means of generalized entropies. Such characteristics can often be dealt in line with more usual treatment based on the von Neumann entropies. For any channel, we show that the qq-average output entropy of degree q1q\geq1 is bounded from above by the qq-entropy of the input density matrix. Concavity properties of the (q,s)(q,s)-entropy exchange are considered. Fano type quantum bounds on the (q,s)(q,s)-entropy exchange are derived. We also give upper bounds on the map (q,s)(q,s)-entropies in terms of the output entropy, corresponding to the completely mixed input.Comment: 10 pages, no figures. The statement of Proposition 1 is explicitly illustrated with the depolarizing channel. The bibliography is extended and updated. More explanations. To be published in Cent. Eur. J. Phy

    Using post-measurement information in state discrimination

    Get PDF
    We consider a special form of state discrimination in which after the measurement we are given additional information that may help us identify the state. This task plays a central role in the analysis of quantum cryptographic protocols in the noisy-storage model, where the identity of the state corresponds to a certain bit string, and the additional information is typically a choice of encoding that is initially unknown to the cheating party. We first provide simple optimality conditions for measurements for any such problem, and show upper and lower bounds on the success probability. For a certain class of problems, we furthermore provide tight bounds on how useful post-measurement information can be. In particular, we show that for this class finding the optimal measurement for the task of state discrimination with post-measurement information does in fact reduce to solving a different problem of state discrimination without such information. However, we show that for the corresponding classical state discrimination problems with post-measurement information such a reduction is impossible, by relating the success probability to the violation of Bell inequalities. This suggests the usefulness of post-measurement information as another feature that distinguishes the classical from a quantum world.Comment: 10 pages, 4 figures, revtex, v2: published version, minor change

    Quantum Network Coding

    Get PDF
    Since quantum information is continuous, its handling is sometimes surprisingly harder than the classical counterpart. A typical example is cloning; making a copy of digital information is straightforward but it is not possible exactly for quantum information. The question in this paper is whether or not quantum network coding is possible. Its classical counterpart is another good example to show that digital information flow can be done much more efficiently than conventional (say, liquid) flow. Our answer to the question is similar to the case of cloning, namely, it is shown that quantum network coding is possible if approximation is allowed, by using a simple network model called Butterfly. In this network, there are two flow paths, s_1 to t_1 and s_2 to t_2, which shares a single bottleneck channel of capacity one. In the classical case, we can send two bits simultaneously, one for each path, in spite of the bottleneck. Our results for quantum network coding include: (i) We can send any quantum state |psi_1> from s_1 to t_1 and |psi_2> from s_2 to t_2 simultaneously with a fidelity strictly greater than 1/2. (ii) If one of |psi_1> and |psi_2> is classical, then the fidelity can be improved to 2/3. (iii) Similar improvement is also possible if |psi_1> and |psi_2> are restricted to only a finite number of (previously known) states. (iv) Several impossibility results including the general upper bound of the fidelity are also given.Comment: 27pages, 11figures. The 12page version will appear in 24th International Symposium on Theoretical Aspects of Computer Science (STACS 2007

    Implementation of two-party protocols in the noisy-storage model

    Get PDF
    The noisy-storage model allows the implementation of secure two-party protocols under the sole assumption that no large-scale reliable quantum storage is available to the cheating party. No quantum storage is thereby required for the honest parties. Examples of such protocols include bit commitment, oblivious transfer and secure identification. Here, we provide a guideline for the practical implementation of such protocols. In particular, we analyze security in a practical setting where the honest parties themselves are unable to perform perfect operations and need to deal with practical problems such as errors during transmission and detector inefficiencies. We provide explicit security parameters for two different experimental setups using weak coherent, and parametric down conversion sources. In addition, we analyze a modification of the protocols based on decoy states.Comment: 41 pages, 33 figures, this is a companion paper to arXiv:0906.1030 considering practical aspects, v2: published version, title changed in accordance with PRA guideline

    Dynamics of Gaseous Disks in a Non-axisymmetric Dark Halo

    Full text link
    The dynamics of a galactic disk in a non-axisymmetric (triaxial) dark halo is studied in detail using high-resolution, numerical, hydrodynamical models. A long-lived, two-armed spiral pattern is generated for a wide range of parameters. The spiral structure is global, and the number of turns can be two or three, depending on the model parameters. The morphology and kinematics of the spiral pattern are studied as functions of the halo and disk parameters. The spiral structure rotates slowly, and its angular velocity varies quasi-periodically. Models with differing relative halo masses, halo semi-axis ratios, distributions of matter in the disk, Mach numbers in the gaseous component, and angular rotational velocities of their halos are considered.Comment: 22 pages, 11 figure

    Steps in the Negative-Differential-Conductivity Regime of a Superconductor

    Full text link
    Current-voltage characteristics were measured in the mixed state of Y1Ba2Cu3O(7-delta) superconducting films in the regime where flux flow becomes unstable and the differential conductivity dj/dE becomes negative. Under conditions where its negative slope is steep, the j(E) curve develops a pronounced staircase like pattern. We attribute the steps in j(E) to the formation of a dynamical phase consisting of the succesive nucleation of quantized distortions in the local vortex velocity and flux distribution within the moving flux matter.Comment: 5 pages, 3 figure

    Strong Influence of the diffuse component on the lattice dynamics in Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_{3}

    Full text link
    The temperature and zone dependence of the lattice dynamics in Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_{3} is characterized using neutron inelastic scattering. A strong correlation between the diffuse and phonon scattering is measured. The lattice dynamics in Brillouin zones where the diffuse scattering is strong is observed to display qualitatively different behavior than those zones where the diffuse scattering is weak. In the (220) and (200) zones, where there is a weak diffuse component, the dynamics are well described by coupled harmonic oscillators. Compared with SrTiO3_{3}, the coupling is weak and isotropic, resulting in only a small transfer of spectral weight from one mode to another. A comparison of the scattering in these zones to the (110) zone, where a strong diffuse component is present, reveals a strong coupling of the diffuse (or central) component to the acoustic mode. We speculate that the coupling to the central peak is the reason for several recent conflicting interpretations of the lattice dynamics based on data from zones with a strong diffuse component.Comment: 7 pages, 7 figure

    Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots

    Full text link
    We report on the impulsive generation of coherent optical phonons in CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump probe experiments using femtosecond laser pulses were performed by tuning the laser central energy to resonate with the absorption edge of the nanocrystals. We identify two longitudinal optical phonons, one longitudinal acoustic phonon and a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the optical phonons as a function of the laser central energy exhibits a resonance that is well described by a model based on impulsive stimulated Raman scattering. The phases of the coherent phonons reveal coupling between different modes. At low power density excitations, the frequency of the optical coherent phonons deviates from values obtained from spontaneous Raman scattering. This behavior is ascribed to the presence of electronic impurity states which modify the nanocrystal dielectric function and, thereby, the frequency of the infrared-active phonons
    corecore