134,423 research outputs found
H∞ Control of Nonlinear Systems: A Class of Controllers
The standard state space solutions to the H∞ control problem for linear time invariant systems are generalized to nonlinear time-invariant systems. A class of nonlinear H∞-controllers are parameterized as nonlinear fractional transformations on contractive, stable free nonlinear parameters. As in the linear case, the H∞ control problem is solved by its reduction to four simpler special state space problems, together with a separation argument. Another byproduct of this approach is that the sufficient conditions for H∞ control problem to be solved are also derived with this machinery. The solvability for nonlinear H∞-control problem requires positive definite solutions to two parallel decoupled Hamilton-Jacobi inequalities and these two solutions satisfy an additional coupling condition. An illustrative example, which deals with a passive plant, is given at the end
Solving 1D Conservation Laws Using Pontryagin's Minimum Principle
This paper discusses a connection between scalar convex conservation laws and
Pontryagin's minimum principle. For flux functions for which an associated
optimal control problem can be found, a minimum value solution of the
conservation law is proposed. For scalar space-independent convex conservation
laws such a control problem exists and the minimum value solution of the
conservation law is equivalent to the entropy solution. This can be seen as a
generalization of the Lax--Oleinik formula to convex (not necessarily uniformly
convex) flux functions. Using Pontryagin's minimum principle, an algorithm for
finding the minimum value solution pointwise of scalar convex conservation laws
is given. Numerical examples of approximating the solution of both
space-dependent and space-independent conservation laws are provided to
demonstrate the accuracy and applicability of the proposed algorithm.
Furthermore, a MATLAB routine using Chebfun is provided (along with
demonstration code on how to use it) to approximately solve scalar convex
conservation laws with space-independent flux functions
Multiple boundary peak solutions for some singularly perturbed Neumann problems
We consider the problem \left \{
\begin{array}{rcl} \varepsilon^2 \Delta u - u + f(u) = 0 & \mbox{ in }& \ \Omega\\ u > 0 \ \mbox{ in} \ \Omega, \ \frac{\partial u}{\partial \nu} = 0 & \mbox{ on }& \ \partial\Omega,
\end{array} \right. where \Omega is a bounded smooth domain in R^N, \varepsilon>KK-peakH(P)K-peak$ solutions.
We first use the Liapunov-Schmidt method to reduce the problem to finite dimensions.
Then we use a maximizing procedure to obtain multiple boundary spikes
Attenuation of Persistent L∞-Bounded Disturbances for Nonlinear Systems
A version of nonlinear generalization of the L1-control problem, which deals with the attenuation of persistent bounded disturbances in L∞-sense, is investigated in this paper. The methods used in this paper are motivated by [23]. The main idea in the L1-performance analysis and synthesis is to construct a certain invariant subset of the state-space such that achieving disturbance rejection is equivalent to restricting the state-dynamics to this set. The concepts from viability theory, nonsmooth analysis, and set-valued analysis play important roles. In addition, the relation between the L1-control of a continuous-time system and the l1-control of its Euler approximated discrete-time systems is established
- …
