119,499 research outputs found
The Ultraviolet flash accompanying GRBs from neutron-rich internal shocks
In the neutron-rich internal shocks model for Gamma-ray Burts (GRBs), the
Lorentz factors (LFs) of ions shells are variable, so are the LFs of
accompanying neutron shells. For slow neutron shells with a typical LF tens,
the typical beta-decay radius reads R_{\beta,s} several 10^{14} cm, which is
much larger than the typical internal shocks radius 10^{13} cm, so their impact
on the internal shocks may be unimportant. However, as GRBs last long enough
(T_{90}>20(1+z) s), one earlier but slower ejected neutron shell will be swept
successively by later ejected ion shells in the range 10^{13}-10^{15} cm, where
slow neutrons have decayed significantly. We show in this work that ion shells
interacting with the beta-decay products of slow neutron shells can power a
ultraviolet (UV) flash bright to 12th magnitude during the prompt gamma-ray
emission phase or slightly delayed, which can be detected by the upcoming
Satellite SWIFT in the near future.Comment: 6 pages (2 eps figures), accepted for publication in ApJ
Diverse Temporal Properties of GRB Afterglow
The detection of delayed X-ray, optical and radio emission, "afterglow",
associated with -ray bursts (GRBs) is consistent with fireball models,
where the emission are produced by relativistic expanding blast wave, driven by
expanding fireball at cosmogical distances. The emission mechanisms of GRB
afterglow have been discussed by many authors and synchrotron radiation is
believed to be the main mechanism. The observations show that the optical light
curves of two observed gamma-ray bursts, GRB970228 and GRB GRB970508, can be
described by a simple power law, which seems to support the synchrotron
radiation explanation. However, here we shall show that under some
circumstances, the inverse Compton scattering (ICS) may play an important role
in emission spectrum and this may influence the temporal properties of GRB
afterglow. We expect that the light curves of GRB afterglow may consist of
multi-components, which depends on the fireball parameters.Comment: Latex, no figures, minor correctio
On Sums of Powers of Almost Equal Primes
We investigate the Waring-Goldbach problem of representing a positive integer
as the sum of th powers of almost equal prime numbers. Define
when , and put . In addition, put
, and
. Suppose that satisfies the necessary congruence conditions, and
put . We show that whenever and , and
is sufficiently large, then is represented as the sum of th powers
of prime numbers with . This conclusion
is based on a new estimate of Weyl-type specific to exponential sums having
variables constrained to short intervals.Comment: 38 pages; in version 2 we have corrected a significant oversight in
section 4 of the original version, leading to a slight adjustment of the
admissible exponents for larger
Exploring Task Mappings on Heterogeneous MPSoCs using a Bias-Elitist Genetic Algorithm
Exploration of task mappings plays a crucial role in achieving high
performance in heterogeneous multi-processor system-on-chip (MPSoC) platforms.
The problem of optimally mapping a set of tasks onto a set of given
heterogeneous processors for maximal throughput has been known, in general, to
be NP-complete. The problem is further exacerbated when multiple applications
(i.e., bigger task sets) and the communication between tasks are also
considered. Previous research has shown that Genetic Algorithms (GA) typically
are a good choice to solve this problem when the solution space is relatively
small. However, when the size of the problem space increases, classic genetic
algorithms still suffer from the problem of long evolution times. To address
this problem, this paper proposes a novel bias-elitist genetic algorithm that
is guided by domain-specific heuristics to speed up the evolution process.
Experimental results reveal that our proposed algorithm is able to handle large
scale task mapping problems and produces high-quality mapping solutions in only
a short time period.Comment: 9 pages, 11 figures, uses algorithm2e.st
Electrochemistry and spectroelectrochemistry of iron porphyrins in the presence of nitrite
The reaction of nitrite with ferric and ferrous porphyrins was examined using visible, infrared and NMR spectroscopy. Solutions of either ferric or ferrous porphyrin were stable in the presence of nitrite, with only complexation reactions being observed. Under voltammetric conditions, though, a rapid reaction between nitrite and iron porphyrins was observed to form the nitrosyl complex, Fe(p)(NO), where Pporphyrins. The products of the reduction of ferric porphyrins in the presence of nitrite were confirmed by visible spectroelectrochemistry to be Fe(P)(NO) and [Fe(P)]2O. Visible, NMR and infrared spectroscopy were used to rule out the formation of Fe(P)(NO) by the iron-catalyzed disproportionation of nitrite. A reaction between iron porphyrins and nitrite only occurred by the presence of both oxidation states (ferric:ferrous). The kinetics of the reaction were monitored by visible spectroscopy, and the reaction was found to be first-order with respect to Fe(OEP)(Cl) and Fe(OEP). The products were the same as those observed in the spectroelectrochemical experiment. The rate was not strongly dependent upon the concentration of nitrite, indicating that the coordinated, not the free nitrite, was the reaction species. The kinetics observed were consistent with a mixed oxidation state nitrite-bridged intermediate, which carried out the oxygen transfer reaction from nitrite to the iron porphyrin. The effect of nitrite coordination on the reaction rate was examined. © 2001 Elsevier Science B.V. All rights reserved
- …
