4,173 research outputs found
Recommended from our members
Spectral signature of ice clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study
Tunneling magnetoresistance in Fe3Si/MgO/Fe3Si(001) magnetic tunnel junctions
published_or_final_versio
Demon-like Algorithmic Quantum Cooling and its Realization with Quantum Optics
The simulation of low-temperature properties of many-body systems remains one
of the major challenges in theoretical and experimental quantum information
science. We present, and demonstrate experimentally, a universal cooling method
which is applicable to any physical system that can be simulated by a quantum
computer. This method allows us to distill and eliminate hot components of
quantum states, i.e., a quantum Maxwell's demon. The experimental
implementation is realized with a quantum-optical network, and the results are
in full agreement with theoretical predictions (with fidelity higher than
0.978). These results open a new path for simulating low-temperature properties
of physical and chemical systems that are intractable with classical methods.Comment: 7 pages, 5 figures, plus supplementarity material
Wall roughness induces asymptotic ultimate turbulence
Turbulence is omnipresent in Nature and technology, governing the transport
of heat, mass, and momentum on multiple scales. For real-world applications of
wall-bounded turbulence, the underlying surfaces are virtually always rough;
yet characterizing and understanding the effects of wall roughness for
turbulence remains a challenge, especially for rotating and thermally driven
turbulence. By combining extensive experiments and numerical simulations, here,
taking as example the paradigmatic Taylor-Couette system (the closed flow
between two independently rotating coaxial cylinders), we show how wall
roughness greatly enhances the overall transport properties and the
corresponding scaling exponents. If only one of the walls is rough, we reveal
that the bulk velocity is slaved to the rough side, due to the much stronger
coupling to that wall by the detaching flow structures. If both walls are
rough, the viscosity dependence is thoroughly eliminated in the boundary layers
and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of
transport, whose existence had been predicted by Robert Kraichnan in 1962
(Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be
extrapolated to arbitrarily large Reynolds numbers
Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.
Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
q-Form fields on p-branes
In this paper, we give one general method for localizing any form (q-form)
field on p-branes with one extra dimension, and apply it to some typical
p-brane models. It is found that, for the thin and thick Minkowski branes with
an infinite extra dimension, the zero mode of the q-form fields with q<(p-1)/2
can be localized on the branes. For the thick Minkowski p-branes with one
finite extra dimension, the localizable q-form fields are those with q<p/2, and
there are also some massive bound Kaluza-Klein modes for these q-form fields on
the branes. For the same q-form field, the number of the bound Kaluza-Klein
modes (but except the scalar field (q=0)) increases with the dimension of the
p-branes. Moreover, on the same p-brane, the q-form fields with higher q have
less number of massive bound KK modes. While for a family of pure geometrical
thick p-branes with a compact extra dimension, the q-form fields with q<p/2
always have a localized zero mode. For a special pure geometrical thick
p-brane, there also exist some massive bound KK modes of the q-form fields with
q<p/2, whose number increases with the dimension of the p-brane.Comment: 14 pages, 2 figures, published versio
In-situ upgrading of Napier grass pyrolysis vapour over microporous and hierarchical mesoporous zeolites
This study presents in-situ upgrading of pyrolysis
vapour derived from Napier grass over microporous and
mesoporous ZSM-5 catalysts. It evaluates effect of process
variables such catalyst–biomass ratio and catalyst type in
a vertical fixed bed pyrolysis system at 600 °C, 50 °C/min
under 5 L/min nitrogen flow. Increasing catalyst–biomass
ratio during the catalytic process with microporous structure
reduced production of organic phase bio-oil by approximately
7.0 wt%. Using mesoporous catalyst promoted
nearly 4.0 wt% higher organic yield relative to microporous
catalyst, which translate to only about 3.0 wt% reduction
in organic phase compared to the yield of organic phase
from non-catalytic process. GC–MS analysis of bio-oil
organic phase revealed maximum degree of deoxygenation
of about 36.9% with microporous catalyst compared to
the mesoporous catalysts, which had between 39 and 43%.
Mesoporous catalysts promoted production olefins and
alkanes, normal phenol, monoaromatic hydrocarbons while
microporous catalyst favoured the production of alkenes
and polyaromatic hydrocarbons. There was no significant increase in the production of normal phenols over microporous catalyst due to its inability to transform the methoxyphenols and methoxy aromatics. This study demonstrated that upgrading of Napier grass pyrolysis vapour over mesoporous ZSM-5 produced bio-oil with improved physicochemical properties
?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH
Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA
Unique and conserved MicroRNAs in wheat chromosome 5D revealed by next-generation sequencing
MicroRNAs are a class of short, non-coding, single-stranded RNAs that act as post-transcriptional regulators in gene expression. miRNA analysis of Triticum aestivum chromosome 5D was performed on 454 GS FLX Titanium sequences of flow sorted chromosome 5D with a total of 3,208,630 good quality reads representing 1.34x and 1.61x coverage of the short (5DS) and long (5DL) arms of the chromosome respectively. In silico and structural analyses revealed a total of 55 miRNAs; 48 and 42 miRNAs were found to be present on 5DL and 5DS respectively, of which 35 were common to both chromosome arms, while 13 miRNAs were specific to 5DL and 7 miRNAs were specific to 5DS. In total, 14 of the predicted miRNAs were identified in wheat for the first time. Representation (the copy number of each miRNA) was also found to be higher in 5DL (1,949) compared to 5DS (1,191). Targets were predicted for each miRNA, while expression analysis gave evidence of expression for 6 out of 55 miRNAs. Occurrences of the same miRNAs were also found in Brachypodium distachyon and Oryza sativa genome sequences to identify syntenic miRNA coding sequences. Based on this analysis, two other miRNAs: miR1133 and miR167 were detected in B. distachyon syntenic region of wheat 5DS. Five of the predicted miRNA coding regions (miR6220, miR5070, miR169, miR5085, miR2118) were experimentally verified to be located to the 5D chromosome and three of them : miR2118, miR169 and miR5085, were shown to be 5D specific. Furthermore miR2118 was shown to be
expressed in Chinese Spring adult leaves. miRNA genes identified in this study will expand our understanding of gene regulation in bread wheat
- …
