16,342 research outputs found

    A cautionary tale: the non-causal association between type 2 diabetes risk SNP, rs7756992, and levels of non-coding RNA, CDKAL1-v1

    Get PDF
    Journal ArticleCopyright © The Author(s) 2015. This article is published with open access at Springerlink.com.Aims/hypothesis: Intronic single nucleotide polymorphisms (SNPs) in the CDKAL1 gene are associated with risk of developing type 2 diabetes. A strong correlation between risk alleles and lower levels of the non-coding RNA, CDKAL1-v1, has recently been reported in whole blood extracted from Japanese individuals. We sought to replicate this association in two independent cohorts: one using whole blood from white UK-resident individuals, and one using a collection of human pancreatic islets, a more relevant tissue type to study with respect to the aetiology of diabetes. Methods: Levels of CDKAL1-v1 were measured by real-time PCR using RNA extracted from human whole blood (n = 70) and human pancreatic islets (n = 48). Expression with respect to genotype was then determined. Results: In a simple linear regression model, expression of CDKAL1-v1 was associated with the lead type 2 diabetes-associated SNP, rs7756992, in whole blood and islets. However, these associations were abolished or substantially reduced in multiple regression models taking into account rs9366357 genotype: a moderately linked SNP explaining a much larger amount of the variation in CDKAL1-v1 levels, but not strongly associated with risk of type 2 diabetes. Conclusions/interpretation: Contrary to previous findings, we provide evidence against a role for dysregulated expression of CDKAL1-v1 in mediating the association between intronic SNPs in CDKAL1 and susceptibility to type 2 diabetes. The results of this study illustrate how caution should be exercised when inferring causality from an association between disease-risk genotype and non-coding RNA expression.MRCNIH

    Microscopics of Extremal Kerr from Spinning M5 Branes

    Get PDF
    We show that the spinning magnetic one-brane in minimal five-dimensional supergravity admits a decoupling limit that interpolates smoothly between a self-dual null orbifold of AdS_3 \times S^2 and the near-horizon limit of the extremal Kerr black hole times a circle. We use this interpolating solution to understand the field theory dual to spinning M5 branes as a deformation of the Discrete Light Cone Quantized (DLCQ) Maldacena-Stominger-Witten (MSW) CFT. In particular, the conformal weights of the operators dual to the deformation around AdS_3 \times S^2 are calculated. We present pieces of evidence showing that a CFT dual to the four-dimensional extremal Kerr can be obtained from the deformed MSW CFT.Comment: 5 page

    A cautionary tale: the non-causal association between type 2 diabetes risk SNP, rs7756992, and levels of non-coding RNA, CDKAL1-v1

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.AIMS/HYPOTHESIS: Intronic single nucleotide polymorphisms (SNPs) in the CDKAL1 gene are associated with risk of developing type 2 diabetes. A strong correlation between risk alleles and lower levels of the non-coding RNA, CDKAL1-v1, has recently been reported in whole blood extracted from Japanese individuals. We sought to replicate this association in two independent cohorts: one using whole blood from white UK-resident individuals, and one using a collection of human pancreatic islets, a more relevant tissue type to study with respect to the aetiology of diabetes. METHODS: Levels of CDKAL1-v1 were measured by real-time PCR using RNA extracted from human whole blood (n = 70) and human pancreatic islets (n = 48). Expression with respect to genotype was then determined. RESULTS: In a simple linear regression model, expression of CDKAL1-v1 was associated with the lead type 2 diabetes-associated SNP, rs7756992, in whole blood and islets. However, these associations were abolished or substantially reduced in multiple regression models taking into account rs9366357 genotype: a moderately linked SNP explaining a much larger amount of the variation in CDKAL1-v1 levels, but not strongly associated with risk of type 2 diabetes. CONCLUSIONS/INTERPRETATION: Contrary to previous findings, we provide evidence against a role for dysregulated expression of CDKAL1-v1 in mediating the association between intronic SNPs in CDKAL1 and susceptibility to type 2 diabetes. The results of this study illustrate how caution should be exercised when inferring causality from an association between disease-risk genotype and non-coding RNA expression.This paper presents independent research funded by the Medical Research Council (grant number MR/J006777/1) and supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the Medical Research Council, UK National Health Service, NIHR or the UK Department of Health

    Modulation of cellular redox homeostasis by the endocannabinoid system

    Get PDF
    The endocannabinoid system (ECS) and reactive oxygen species (ROS) constitute two key cellular signalling systems that participate in the modulation of diverse cellular functions. Importantly, growing evidence suggests that cross-talk between these two prominent signalling systems acts to modulate functionality of the ECS as well as redox homeostasis in different cell types. Herein, we review and discuss evidence pertaining to ECS-induced regulation of ROS generating and scavenging mechanisms, as well as highlighting emerging work that supports redox modulation of ECS function. Functionally, the studies outlined reveal that interactions between the ECS and ROS signalling systems can be both stimulatory and inhibitory in nature, depending on cell stimulus, the source of ROS species and cell context. Importantly, such cross-talk may act to maintain cell function, whereas abnormalities in either system may propagate and undermine the stability of both systems, thereby contributing to various pathologies associated with their dysregulation

    Social contacts and the locations in which they occur as risk factors for influenza infection

    Get PDF
    The interaction of human social behaviour and transmission is an intriguing aspect of the life cycle of respiratory viral infections. Although age-specific mixing patterns are often assumed to be the key drivers of the age-specific heterogeneity in transmission, the association between social contacts and biologically confirmed infection has not previously been tested at the individual level. We administered a questionnaire to participants in a longitudinal cohort survey of influenza in which infection was defined by longitudinal paired serology. Using a variety of statistical approaches, we found overwhelming support for the inclusion of individual age in addition to contact variables when explaining odds of infection: the best model not including age explained only 15.7% of the deviance, whereas the best model with age explained 23.6%. However, within age groups, we did observe an association between contacts, locations and infection: median numbers of contacts (or locations) reported by those infected were higher than those from the uninfected group in every age group other than the youngest. Further, we found some support for the retention of location and contact variables in addition to age in our regression models, with excess odds of infection of approximately 10% per additional 10 contacts or one location. These results suggest that, although the relationship between age and incidence of respiratory infection at the level of the individual is not driven by self-reported social contacts, risk within an age group may be.published_or_final_versio

    Epigenetics as a mechanism driving polygenic clinical drug resistance

    Get PDF
    Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance

    Molecular Diversity and Potential Anti-neuroinflammatory Activities of Cyathane Diterpenoids from the Basidiomycete Cyathus africanus

    Get PDF
    Ten new polyoxygenated cyathane diterpenoids, named neocyathins A-J (1-10), together with four known diterpenes (11-14), were isolated from the liquid culture of the medicinal basidiomycete fungus Cyathus africanus. The structures and configurations of these new compounds were elucidated through comprehensive spectroscopic analyses including 1D NMR, 2D NMR (HSQC, HMBC, NOESY) and HRESIMS, and electronic circular dichroism (ECD) data. Neuroinflammation is implicated in the pathogenesis of various neurodegenerative diseases, such as Alzheimers' disease (AD). All isolated compounds were evaluated for the potential anti-neuroinflammatory activities in BV2 microglia cells. Several compounds showed differential effects on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated and Aβ1-42-treated mouse microglia cell line BV-2. Molecular docking revealed that bioactive compounds (e.g., 11) could interact with iNOS protein other than COX-2 protein. Collectively, our results suggested that this class of cyathane diterpenoids might serve as important lead compounds for drug discovery against neuroinflammation in AD.published_or_final_versio

    The Spectrum of Strings on Warped AdS_3 x S^3

    Full text link
    String theory on NS-NS AdS_3 x S^3 admits an exactly marginal deformation which breaks the SL(2,R)_R x SL(2,R)_L isometry of AdS_3 down to SL(2,R)_R x U(1)_L. The holographic dual is an exotic and only partially understood type of two-dimensional CFT with a reduced unbroken global conformal symmetry group. In this paper we study the deformed theory on the string worldsheet. It is found to be related by a spectral flow which is nonlocal in spacetime to the undeformed worldsheet theory. An exact formula for the spectrum of massive strings is presented.Comment: 26 pages, no figure

    Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53

    Get PDF
    Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets. Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region. Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes

    Chern-Simons black holes: scalar perturbations, mass and area spectrum and greybody factors

    Full text link
    We study the Chern-Simons black holes in d-dimensions and we calculate analytically the quasi-normal modes of the scalar perturbations and we show that they depend on the highest power of curvature present in the Chern-Simons theory. We obtain the mass and area spectrum of these black holes and we show that they have a strong dependence on the topology of the transverse space and they are not evenly spaced. We also calculate analytically the reflection and transmission coefficients and the absorption cross section and we show that at low frequency limit there is a range of modes which contributes to the absorption cross section.Comment: 19 pages, 18 figures, the title has been changed to reflect the addition of an another section on the reflection, transmission coefficients and absorption cross sections of the Chern-Simons black holes. Version to be published in JHE
    corecore