168,922 research outputs found
Multi-Peak Solutions for a Wide Class of Singular Perturbation Problems
In this paper we are
concerned with a wide class of singular perturbation problems arising
from such diverse fields as phase transitions,
chemotaxis, pattern formation,
population dynamics and chemical reaction theory.
We study the corresponding elliptic
equations in a bounded domain without any symmetry
assumptions. We assume that the
mean curvature of the boundary
has \overline{M} isolated, non-degenerate critical points.
Then we show that for any positive integer m\leq \overline{M}
there exists a stationary
solution with M local peaks which are attained on the boundary and
which lie close to these critical points.
Our method is based on Liapunov-Schmidt reduction
Solutions for the Cahn-Hilliard Equation With Many Boundary Spike Layers
In this paper we
construct new classes of stationary solutions for the Cahn-Hilliard
equation
by a novel approach.
One of the results is as follows:
Given a positive integer K and a (not necessarily nondegenerate) local
minimum point of the mean curvature of the boundary then there are
boundary
K-spike solutions
whose peaks all approach this point.
This implies that for any smooth and bounded domain there
exist boundary K-spike solutions.
The central ingredient of our analysis is the novel derivation and
exploitation of a reduction of the energy to finite dimensions (Lemma 3.5),
where the variables are closely related to the peak loations
Stationary solutions for the Cahn-Hilliard equation
We study the Cahn-Hilliard equation in a bounded domain without any symmetry assumptions. We assume that the mean curvature of the boundary
has a nongenerate critical point. Then we show that there exists a spike-like stationary solution whose global maximum lies on the boundary. Our method is based on Lyapunov-Schmidt reduction and the Brouwer fixed-point theorem
Asymmetric patterns for the Gierer-Meinhardt system
In this paper, we rigorously
prove the existence and stability of K-peaked asymmetric
patterns for the Gierer-Meinhardt system in a two dimensional domain
which are far from
spatial homogeneity.
We show that given any positive integers k_1,\,k_2 \geq 1
with k_1+k_2=K,
there are asymmetric patterns with
k_1 large peaks and k_2 small peaks.
Most of these asymmetric patterns are shown
to be unstable. However,
in a narrow range of parameters,
asymmetric patterns may be stable
(in contrast to the one-dimensional case)
Higher-Order Energy Expansions and Spike Locations
We consider the following singularly perturbed semilinear elliptic problem:
(I)\left\{
\begin{array}{l}
\epsilon^{2} \Delta u - u + f(u)=0 \ \ \mbox{in} \ \Omega, \\
u>0 \ \ \mbox{in} \ \ \Omega \ \ \mbox{and} \
\frac{\partial u}{\partial \nu} =0 \ \mbox{on} \ \partial \Omega,
\end{array}
\right.
where \Om is a bounded domain in R^N with smooth boundary \partial \Om, \ep>0 is a small constant and f is some superlinear but subcritical nonlinearity.
Associated with (I) is the energy functional J_\ep defined by
J_\ep [u]:= \int_\Om \left(\frac{\ep^2}{2} |\nabla u|^2 + \frac{1}{2} u^2- F(u)\right) dx
\ \ \ \ \ \mbox{for} \ u \in H^1 (\Om),
where F(u)=\int_0^u f(s)ds. Ni and Takagi proved that for a single boundary spike solution u_\ep, the following asymptotic expansion holds:
J_\ep [u_\ep] =\ep^{N} \Bigg[ \frac{1}{2} I[w] -c_1 \ep H(P_\ep) + o(\ep)\Bigg],
where c_1>0 is a generic constant, P_\ep is the unique local maximum point of u_\ep and H(P_\ep) is the boundary mean curvature function at P_\ep \in \partial \Om.
In this paper, we obtain a higher-order expansion of J_\ep [u_\ep]:
J_\ep [u_\ep] =\ep^{N} \Bigg[ \frac{1}{2} I[w] -c_1 \ep H(P_\ep) + \ep^2 [c_2 (H(P_\ep))^2 + c_3 R (P_\ep)]+ o(\ep^2)\Bigg]
where c_2, c_3 are generic constants
and R(P_\ep) is the Ricci scalar curvature at P_\ep.
In particular c_3 >0. Some applications of this expansion are given
Mutually exclusive spiky pattern and segmentation modelled by the five-component meinhardt-gierer system
We consider the five-component Meinhardt-Gierer
model for mutually exclusive patterns and
segmentation. We
prove rigorous results on the existence and
stability of mutually exclusive spikes which are
located in different positions for the two
activators.
Sufficient conditions for existence and stability
are derived, which depend in particular on the
relative size of the various diffusion constants.
Our main analytical methods are the
Liapunov-Schmidt reduction
and nonlocal eigenvalue problems. The analytical
results are confirmed by numerical simulations
Existence and stability of multiple spot solutions for the gray-scott model in R^2
We study the Gray-Scott model in a bounded two dimensional domain and establish the existence and stability of {\bf symmetric} and {\bf asymmetric} multiple spotty patterns. The Green's function and its derivatives
together with two nonlocal eigenvalue problems
both play a major role in the analysis.
For symmetric spots, we establish a threshold behavior for stability:
If a certain inequality for the parameters holds
then we get stability, otherwise we get instability of multiple spot solutions.
For asymmetric spots, we show that they can be stable within a narrow parameter range
On the Gierer-Meinhardt system with precursors
We consider the Gierer-Meinhardt system with a for the activator. Such an equation exhibits a typical Turing bifurcation of the second kind, i.e., homogeneous uniform steady states do not exist in the system. We establish the existence and stability of N-peaked steady-states in terms of the precursor and the inhibitor diffusivity. It is shown that the precursor plays an essential role for both existence and stability of spiky patterns. In particular, we show that precursors can give rise to
instability. This is a new effect which is not present in the homogeneous case
On the Stationary Cahn-Hilliard Equation: Bubble Solutions
We study
stationary solutions of the Cahn--Hilliard equation in a bounded
smooth domain which have an interior spherical interface (bubbles).
We show that a large class of interior points
(the ``nondegenerate peak'' points)
have the following property: there exists such a
solution whose bubble center lies close to a given nondegenerate peak point.
Our construction uses among others the Liapunov-Schmidt
reduction method and exponential asymptotics
Stationary Multiple Spots for Reaction-Diffusion Systems
In this paper, we review
analytical methods for a rigorous study of the
existence and stability of stationary, multiple
spots for reaction-diffusion systems. We will
consider two classes of reaction-diffusion
systems: activator-inhibitor systems (such as
the Gierer-Meinhardt system) and
activator-substrate systems (such as the
Gray-Scott system or the Schnakenberg model).
The main ideas are presented in the context of
the Schnakenberg model, and these results are
new to the literature.
We will consider the systems in a
two-dimensional, bounded and smooth domain for small diffusion
constant of the activator.
Existence of multi-spots is proved using tools
from nonlinear functional analysis such as
Liapunov-Schmidt reduction and fixed-point
theorems. The amplitudes and positions of spots
follow from this analysis.
Stability is shown in two parts, for
eigenvalues of order one and eigenvalues
converging to zero, respectively. Eigenvalues
of order one are studied by deriving their
leading-order asymptotic behavior and reducing
the eigenvalue problem to a nonlocal eigenvalue
problem (NLEP). A study of the NLEP reveals a
condition for the maximal number of stable
spots.
Eigenvalues converging to zero are investigated
using a projection similar to Liapunov-Schmidt
reduction and conditions on the positions for
stable spots are derived. The Green's function
of the Laplacian plays a central role in the
analysis.
The results are interpreted in the biological,
chemical and ecological contexts. They are
confirmed by numerical simulations
- …
